基于交通调查数据和手机信令的交通预测系统

Han Feng, Lihong Jiang, Hongming Cai
{"title":"基于交通调查数据和手机信令的交通预测系统","authors":"Han Feng, Lihong Jiang, Hongming Cai","doi":"10.1109/ICEBE.2018.00035","DOIUrl":null,"url":null,"abstract":"Traffic prediction is becoming more important for users to avoid traffic congestion. This paper represents a traffic prediction method based on the modelling of road traffic investigation data and mobile phone signaling as ElasticNet Regression using traffic investigation data and Road Node Fitting Algorithm using User Track. A framework is proposed to combine the two kinds of data and a multi-functional traffic prediction system. A prototype system is developed. Discussion is demonstrated in the paper.","PeriodicalId":221376,"journal":{"name":"2018 IEEE 15th International Conference on e-Business Engineering (ICEBE)","volume":"24 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Traffic Prediction System Based on Traffic Investigation Data and Mobile Phone Signaling\",\"authors\":\"Han Feng, Lihong Jiang, Hongming Cai\",\"doi\":\"10.1109/ICEBE.2018.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic prediction is becoming more important for users to avoid traffic congestion. This paper represents a traffic prediction method based on the modelling of road traffic investigation data and mobile phone signaling as ElasticNet Regression using traffic investigation data and Road Node Fitting Algorithm using User Track. A framework is proposed to combine the two kinds of data and a multi-functional traffic prediction system. A prototype system is developed. Discussion is demonstrated in the paper.\",\"PeriodicalId\":221376,\"journal\":{\"name\":\"2018 IEEE 15th International Conference on e-Business Engineering (ICEBE)\",\"volume\":\"24 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 15th International Conference on e-Business Engineering (ICEBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEBE.2018.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 15th International Conference on e-Business Engineering (ICEBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEBE.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交通预测对于用户避免交通拥堵变得越来越重要。本文提出了一种基于道路交通调查数据和手机信令建模的交通预测方法,即基于交通调查数据的ElasticNet回归和基于用户轨迹的道路节点拟合算法。提出了一种将两种数据结合起来的框架和多功能交通预测系统。开发了一个原型系统。本文对此进行了论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Traffic Prediction System Based on Traffic Investigation Data and Mobile Phone Signaling
Traffic prediction is becoming more important for users to avoid traffic congestion. This paper represents a traffic prediction method based on the modelling of road traffic investigation data and mobile phone signaling as ElasticNet Regression using traffic investigation data and Road Node Fitting Algorithm using User Track. A framework is proposed to combine the two kinds of data and a multi-functional traffic prediction system. A prototype system is developed. Discussion is demonstrated in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信