多通道分类共振网络*

Joonhyuk Kim, Gyeong-Moon Park, Jong-Hwan Kim
{"title":"多通道分类共振网络*","authors":"Joonhyuk Kim, Gyeong-Moon Park, Jong-Hwan Kim","doi":"10.1109/RITAPP.2019.8932859","DOIUrl":null,"url":null,"abstract":"A fusion ARTMAP is an online incremental supervised learning algorithm with multiple input channels. Whenever the ARTMAP receives labeled data, it can learn the data instantly. The fusion ARTMAP, however, is not robust to noise, which means the network predicts the wrong classes from noisy inputs. To solve this problem, we propose a multi-channel classification resonance network (MCRN). MCRN consists of two phases. In the first phase, the network maintains multiple channels without concatenating the inputs. In the second phase, the network identifies the inputs near the decision boundaries and reclassifies them by employing multi-layer perceptron (MLP) networks of which weights are trained by a back-propagation algorithm. A parallel match tracking process in MCRN finds the inputs near the decision boundaries. Two-channel classification simulations are carried out to demonstrate the effectiveness of MCRN for multi-channel cases. The simulation results show that the performance of MCRN is better than that of the fusion ARTMAP for artificial data sets.","PeriodicalId":234023,"journal":{"name":"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)","volume":"490 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-channel Classification Resonance Network*\",\"authors\":\"Joonhyuk Kim, Gyeong-Moon Park, Jong-Hwan Kim\",\"doi\":\"10.1109/RITAPP.2019.8932859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fusion ARTMAP is an online incremental supervised learning algorithm with multiple input channels. Whenever the ARTMAP receives labeled data, it can learn the data instantly. The fusion ARTMAP, however, is not robust to noise, which means the network predicts the wrong classes from noisy inputs. To solve this problem, we propose a multi-channel classification resonance network (MCRN). MCRN consists of two phases. In the first phase, the network maintains multiple channels without concatenating the inputs. In the second phase, the network identifies the inputs near the decision boundaries and reclassifies them by employing multi-layer perceptron (MLP) networks of which weights are trained by a back-propagation algorithm. A parallel match tracking process in MCRN finds the inputs near the decision boundaries. Two-channel classification simulations are carried out to demonstrate the effectiveness of MCRN for multi-channel cases. The simulation results show that the performance of MCRN is better than that of the fusion ARTMAP for artificial data sets.\",\"PeriodicalId\":234023,\"journal\":{\"name\":\"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)\",\"volume\":\"490 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RITAPP.2019.8932859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RITAPP.2019.8932859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

融合ARTMAP是一种具有多输入通道的在线增量监督学习算法。只要ARTMAP接收到标记数据,它就可以立即学习数据。然而,融合的ARTMAP对噪声没有鲁棒性,这意味着网络从有噪声的输入中预测出错误的类别。为了解决这一问题,我们提出了一种多通道分类共振网络(MCRN)。MCRN包括两个阶段。在第一阶段,网络维持多个通道,而不连接输入。在第二阶段,网络识别靠近决策边界的输入,并使用多层感知器(MLP)网络对其进行重新分类,该网络的权重由反向传播算法训练。在MCRN中,并行匹配跟踪过程寻找靠近决策边界的输入。通过双通道分类仿真,验证了MCRN在多通道情况下的有效性。仿真结果表明,对于人工数据集,MCRN算法的性能优于融合ARTMAP算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-channel Classification Resonance Network*
A fusion ARTMAP is an online incremental supervised learning algorithm with multiple input channels. Whenever the ARTMAP receives labeled data, it can learn the data instantly. The fusion ARTMAP, however, is not robust to noise, which means the network predicts the wrong classes from noisy inputs. To solve this problem, we propose a multi-channel classification resonance network (MCRN). MCRN consists of two phases. In the first phase, the network maintains multiple channels without concatenating the inputs. In the second phase, the network identifies the inputs near the decision boundaries and reclassifies them by employing multi-layer perceptron (MLP) networks of which weights are trained by a back-propagation algorithm. A parallel match tracking process in MCRN finds the inputs near the decision boundaries. Two-channel classification simulations are carried out to demonstrate the effectiveness of MCRN for multi-channel cases. The simulation results show that the performance of MCRN is better than that of the fusion ARTMAP for artificial data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信