大数据应用于半导体制造的优势

Gabe Villareal, James Na, Joe Lee, T. Ho
{"title":"大数据应用于半导体制造的优势","authors":"Gabe Villareal, James Na, Joe Lee, T. Ho","doi":"10.1109/ASMC.2018.8373166","DOIUrl":null,"url":null,"abstract":"In semiconductor manufacturing, advanced analytics are widely practiced for root-cause analysis and optimization of processes. Big Data promises to provide manufacturers a more powerful platform to get quicker and more insightful results over the traditional RDBMS systems, but most manufacturers have not made the move to this new technology. This paper examines three separate studies by tier-1 semiconductor manufacturers on their Big Data experience. Key advantages of this emerging technology will be highlighted to illustrate how Big Data can help to increase efficiency and improve performance.","PeriodicalId":349004,"journal":{"name":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advantages of using big data in semiconductor manufacturing\",\"authors\":\"Gabe Villareal, James Na, Joe Lee, T. Ho\",\"doi\":\"10.1109/ASMC.2018.8373166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In semiconductor manufacturing, advanced analytics are widely practiced for root-cause analysis and optimization of processes. Big Data promises to provide manufacturers a more powerful platform to get quicker and more insightful results over the traditional RDBMS systems, but most manufacturers have not made the move to this new technology. This paper examines three separate studies by tier-1 semiconductor manufacturers on their Big Data experience. Key advantages of this emerging technology will be highlighted to illustrate how Big Data can help to increase efficiency and improve performance.\",\"PeriodicalId\":349004,\"journal\":{\"name\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.2018.8373166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2018.8373166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在半导体制造中,高级分析被广泛用于根本原因分析和工艺优化。与传统的RDBMS系统相比,大数据有望为制造商提供一个更强大的平台,以获得更快、更有洞察力的结果,但大多数制造商还没有转向这项新技术。本文考察了一级半导体制造商在大数据方面的三个独立研究。本文将重点介绍这一新兴技术的主要优势,以说明大数据如何帮助提高效率和改善性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advantages of using big data in semiconductor manufacturing
In semiconductor manufacturing, advanced analytics are widely practiced for root-cause analysis and optimization of processes. Big Data promises to provide manufacturers a more powerful platform to get quicker and more insightful results over the traditional RDBMS systems, but most manufacturers have not made the move to this new technology. This paper examines three separate studies by tier-1 semiconductor manufacturers on their Big Data experience. Key advantages of this emerging technology will be highlighted to illustrate how Big Data can help to increase efficiency and improve performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信