基于TLD和CMT融合模型的视频目标跟踪

H. Tran
{"title":"基于TLD和CMT融合模型的视频目标跟踪","authors":"H. Tran","doi":"10.24203/ijcit.v10i5.151","DOIUrl":null,"url":null,"abstract":"Object tracking has been an attractive study topic in computer vision in recent years, thanks to the development of video monitoring systems. Tracking-Learning Detection (TLD), Compressive Tracking (CT), and Clustering of Static-Adaptive Correspondences for Deformable Object Tracking are some of the state-of-the-art methods for motion object tracking (CMT). We present a fusion model that combines TLD and CMT in this study. To restrict the calculation time of the CMT technique, the fusion TLD CMT model enhanced the TLD benefits of computation time and accuracy on t no deformable objects. The experimental results on the Vojir dataset for three techniques (TLD, CMT, and TLD CMT) demonstrated that our fusion proposal successfully trades off CMT accuracy for computing time.","PeriodicalId":359510,"journal":{"name":"International Journal of Computer and Information Technology(2279-0764)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object Tracking in Video Using the TLD and CMT Fusion Model\",\"authors\":\"H. Tran\",\"doi\":\"10.24203/ijcit.v10i5.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object tracking has been an attractive study topic in computer vision in recent years, thanks to the development of video monitoring systems. Tracking-Learning Detection (TLD), Compressive Tracking (CT), and Clustering of Static-Adaptive Correspondences for Deformable Object Tracking are some of the state-of-the-art methods for motion object tracking (CMT). We present a fusion model that combines TLD and CMT in this study. To restrict the calculation time of the CMT technique, the fusion TLD CMT model enhanced the TLD benefits of computation time and accuracy on t no deformable objects. The experimental results on the Vojir dataset for three techniques (TLD, CMT, and TLD CMT) demonstrated that our fusion proposal successfully trades off CMT accuracy for computing time.\",\"PeriodicalId\":359510,\"journal\":{\"name\":\"International Journal of Computer and Information Technology(2279-0764)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer and Information Technology(2279-0764)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24203/ijcit.v10i5.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer and Information Technology(2279-0764)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24203/ijcit.v10i5.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着视频监控系统的发展,目标跟踪已成为计算机视觉领域一个很有吸引力的研究课题。跟踪学习检测(TLD)、压缩跟踪(CT)和静态自适应对应聚类是运动目标跟踪(CMT)的一些最先进的方法。在本研究中,我们提出了一个结合TLD和CMT的融合模型。为了限制CMT技术的计算时间,融合TLD CMT模型提高了TLD在无变形目标情况下计算时间和精度的优势。在Vojir数据集上对三种技术(TLD、CMT和TLD CMT)的实验结果表明,我们的融合方案成功地在计算时间上权衡了CMT的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object Tracking in Video Using the TLD and CMT Fusion Model
Object tracking has been an attractive study topic in computer vision in recent years, thanks to the development of video monitoring systems. Tracking-Learning Detection (TLD), Compressive Tracking (CT), and Clustering of Static-Adaptive Correspondences for Deformable Object Tracking are some of the state-of-the-art methods for motion object tracking (CMT). We present a fusion model that combines TLD and CMT in this study. To restrict the calculation time of the CMT technique, the fusion TLD CMT model enhanced the TLD benefits of computation time and accuracy on t no deformable objects. The experimental results on the Vojir dataset for three techniques (TLD, CMT, and TLD CMT) demonstrated that our fusion proposal successfully trades off CMT accuracy for computing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信