非线性介电介质中极化子的性质

I. Dzedolik, O. Karakchieva
{"title":"非线性介电介质中极化子的性质","authors":"I. Dzedolik, O. Karakchieva","doi":"10.1109/NLP.2013.6646379","DOIUrl":null,"url":null,"abstract":"We obtain theoretically the phonon-polariton spectrum in nonlinear dielectric medium with the third order Kerr-type nonlinearity and demonstrate that the appearance of new branches located in the polariton spectrum gaps. The modulation instability of new spectrum branch waves leads to the appearance of the cnoidal waves or solitons. We theoretically investigate the properties of vector and scalar phonon-polariton cnoidal waves and spatial solitons propagating in boundless dielectric medium.","PeriodicalId":339550,"journal":{"name":"2013 IEEE 2nd International Workshop \"Nonlinear Photonics\" (NLP*2013)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Properties of polaritons in nonlinear dielectric medium\",\"authors\":\"I. Dzedolik, O. Karakchieva\",\"doi\":\"10.1109/NLP.2013.6646379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain theoretically the phonon-polariton spectrum in nonlinear dielectric medium with the third order Kerr-type nonlinearity and demonstrate that the appearance of new branches located in the polariton spectrum gaps. The modulation instability of new spectrum branch waves leads to the appearance of the cnoidal waves or solitons. We theoretically investigate the properties of vector and scalar phonon-polariton cnoidal waves and spatial solitons propagating in boundless dielectric medium.\",\"PeriodicalId\":339550,\"journal\":{\"name\":\"2013 IEEE 2nd International Workshop \\\"Nonlinear Photonics\\\" (NLP*2013)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 2nd International Workshop \\\"Nonlinear Photonics\\\" (NLP*2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLP.2013.6646379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 2nd International Workshop \"Nonlinear Photonics\" (NLP*2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLP.2013.6646379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们从理论上得到了具有三阶kerr型非线性的非线性介质中的声子-极化子谱,并证明了在极化子谱隙中出现了新的分支。新谱分支波的调制不稳定性导致了余弦波或孤子的出现。本文从理论上研究了在无界介质中传播的矢量和标量声子极化余弦波和空间孤子的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of polaritons in nonlinear dielectric medium
We obtain theoretically the phonon-polariton spectrum in nonlinear dielectric medium with the third order Kerr-type nonlinearity and demonstrate that the appearance of new branches located in the polariton spectrum gaps. The modulation instability of new spectrum branch waves leads to the appearance of the cnoidal waves or solitons. We theoretically investigate the properties of vector and scalar phonon-polariton cnoidal waves and spatial solitons propagating in boundless dielectric medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信