面向多气体传感器应用的快速独立分量分析(FICA)低功耗算法体系结构协同设计

Chih-Chao Yang, Po-Tsang Huang, Chun-Ying Huang, C. Chuang, W. Hwang
{"title":"面向多气体传感器应用的快速独立分量分析(FICA)低功耗算法体系结构协同设计","authors":"Chih-Chao Yang, Po-Tsang Huang, Chun-Ying Huang, C. Chuang, W. Hwang","doi":"10.1109/VLSI-DAT.2015.7114512","DOIUrl":null,"url":null,"abstract":"For miniaturized multi-gas sensors, the detected multi-gas signals would be self-interfered by responses to multiple gases. In this paper, a fast Independent Component Analysis (FICA) is proposed to restore the original source signals from the mixed signals received by different gas sensors. This FICA is designed and implemented by low power algorithm-architecture co-design considering the tradeoffs among power, delay and accuracy of extracted signals for multi-gas sensor applications. To further reduce the power consumption, a data-length controller is designed to adjust the calculated data-length. Additionally, a stability check unit is utilized to terminate the ICA execution for reduction of the computation time and total energy. Compared with the conventional ICA design, the proposed low-power FICA realizes energy reduction by 75% for multi-gas sensor applications.","PeriodicalId":369130,"journal":{"name":"VLSI Design, Automation and Test(VLSI-DAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low power algorithm-architecture co-design of fast Independent Component Analysis (FICA) for multi-gas sensor applications\",\"authors\":\"Chih-Chao Yang, Po-Tsang Huang, Chun-Ying Huang, C. Chuang, W. Hwang\",\"doi\":\"10.1109/VLSI-DAT.2015.7114512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For miniaturized multi-gas sensors, the detected multi-gas signals would be self-interfered by responses to multiple gases. In this paper, a fast Independent Component Analysis (FICA) is proposed to restore the original source signals from the mixed signals received by different gas sensors. This FICA is designed and implemented by low power algorithm-architecture co-design considering the tradeoffs among power, delay and accuracy of extracted signals for multi-gas sensor applications. To further reduce the power consumption, a data-length controller is designed to adjust the calculated data-length. Additionally, a stability check unit is utilized to terminate the ICA execution for reduction of the computation time and total energy. Compared with the conventional ICA design, the proposed low-power FICA realizes energy reduction by 75% for multi-gas sensor applications.\",\"PeriodicalId\":369130,\"journal\":{\"name\":\"VLSI Design, Automation and Test(VLSI-DAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VLSI Design, Automation and Test(VLSI-DAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI-DAT.2015.7114512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI Design, Automation and Test(VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT.2015.7114512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于小型化的多气体传感器,检测到的多气体信号会受到多气体响应的自干扰。本文提出了一种快速独立分量分析(FICA)方法,用于从不同气体传感器接收到的混合信号中恢复原始源信号。考虑到多气体传感器应用中提取信号的功耗、延迟和精度之间的权衡,采用低功耗算法架构协同设计的方法设计和实现了FICA。为了进一步降低功耗,设计了数据长度控制器来调节计算出的数据长度。此外,为了减少计算时间和总能量,还使用了稳定性检查单元来终止ICA的执行。与传统ICA设计相比,本文提出的低功耗FICA在多气体传感器应用中实现了75%的节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low power algorithm-architecture co-design of fast Independent Component Analysis (FICA) for multi-gas sensor applications
For miniaturized multi-gas sensors, the detected multi-gas signals would be self-interfered by responses to multiple gases. In this paper, a fast Independent Component Analysis (FICA) is proposed to restore the original source signals from the mixed signals received by different gas sensors. This FICA is designed and implemented by low power algorithm-architecture co-design considering the tradeoffs among power, delay and accuracy of extracted signals for multi-gas sensor applications. To further reduce the power consumption, a data-length controller is designed to adjust the calculated data-length. Additionally, a stability check unit is utilized to terminate the ICA execution for reduction of the computation time and total energy. Compared with the conventional ICA design, the proposed low-power FICA realizes energy reduction by 75% for multi-gas sensor applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信