基于分辨率不相关编码和难度平衡损失的多人姿态估计网络独立监督

Haiyang Liu, Dingli Luo, Songlin Du, T. Ikenaga
{"title":"基于分辨率不相关编码和难度平衡损失的多人姿态估计网络独立监督","authors":"Haiyang Liu, Dingli Luo, Songlin Du, T. Ikenaga","doi":"10.1109/HSI49210.2020.9142625","DOIUrl":null,"url":null,"abstract":"Sustainable efforts are made to improve the accuracy performance in multi-person pose estimation, but the current accuracy is still not enough for real-world applications. Besides, most improvement approaches are designed for special basement networks and ignore the speed performance, which results in limited applicability and low cost-performance. This paper proposes two network independent supervision: Resolution Irrelevant Encoding and Difficulty Balanced Loss. The proposed methods reorganize task representatives, the loss calculation method, and the loss punishment ratio in one-stage pose estimation frameworks to improve the joints' location accuracy with general applicability and high computational efficiency. Resolution Irrelevant Encoding fuses heatmaps and proposed inner block offsets to fix pixel-level joints positions without resolution limitations. To improve network training efficiency, Difficulty Balanced Loss adjusts loss weight in spatial and sequential aspects. On the MS COCO keypoints detection benchmark, the mAP of OpenPose trained with our proposals outperforms the OpenPose baseline over 4.9%.","PeriodicalId":371828,"journal":{"name":"2020 13th International Conference on Human System Interaction (HSI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resolution Irrelevant Encoding and Difficulty Balanced Loss Based Network Independent Supervision for Multi-Person Pose Estimation\",\"authors\":\"Haiyang Liu, Dingli Luo, Songlin Du, T. Ikenaga\",\"doi\":\"10.1109/HSI49210.2020.9142625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainable efforts are made to improve the accuracy performance in multi-person pose estimation, but the current accuracy is still not enough for real-world applications. Besides, most improvement approaches are designed for special basement networks and ignore the speed performance, which results in limited applicability and low cost-performance. This paper proposes two network independent supervision: Resolution Irrelevant Encoding and Difficulty Balanced Loss. The proposed methods reorganize task representatives, the loss calculation method, and the loss punishment ratio in one-stage pose estimation frameworks to improve the joints' location accuracy with general applicability and high computational efficiency. Resolution Irrelevant Encoding fuses heatmaps and proposed inner block offsets to fix pixel-level joints positions without resolution limitations. To improve network training efficiency, Difficulty Balanced Loss adjusts loss weight in spatial and sequential aspects. On the MS COCO keypoints detection benchmark, the mAP of OpenPose trained with our proposals outperforms the OpenPose baseline over 4.9%.\",\"PeriodicalId\":371828,\"journal\":{\"name\":\"2020 13th International Conference on Human System Interaction (HSI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Conference on Human System Interaction (HSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSI49210.2020.9142625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Conference on Human System Interaction (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI49210.2020.9142625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人们不断努力提高多人姿态估计的精度,但目前的精度仍然不足以满足实际应用。此外,大多数改进方法都是针对特殊的地下室网络设计的,忽略了速度性能,导致适用性有限,性价比较低。本文提出了两种网络独立监督:分辨率无关编码和难度平衡损失。提出的方法对一级姿态估计框架中的任务代表、损失计算方法和损失惩罚率进行重组,提高了关节的定位精度,具有通用性和较高的计算效率。分辨率无关编码融合了热图,并提出了内部块偏移来固定像素级的关节位置,而不受分辨率限制。为了提高网络训练效率,难度均衡损失从空间和顺序两个方面对损失权重进行了调整。在MS COCO关键点检测基准上,我们的建议训练的OpenPose mAP优于OpenPose基线4.9%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resolution Irrelevant Encoding and Difficulty Balanced Loss Based Network Independent Supervision for Multi-Person Pose Estimation
Sustainable efforts are made to improve the accuracy performance in multi-person pose estimation, but the current accuracy is still not enough for real-world applications. Besides, most improvement approaches are designed for special basement networks and ignore the speed performance, which results in limited applicability and low cost-performance. This paper proposes two network independent supervision: Resolution Irrelevant Encoding and Difficulty Balanced Loss. The proposed methods reorganize task representatives, the loss calculation method, and the loss punishment ratio in one-stage pose estimation frameworks to improve the joints' location accuracy with general applicability and high computational efficiency. Resolution Irrelevant Encoding fuses heatmaps and proposed inner block offsets to fix pixel-level joints positions without resolution limitations. To improve network training efficiency, Difficulty Balanced Loss adjusts loss weight in spatial and sequential aspects. On the MS COCO keypoints detection benchmark, the mAP of OpenPose trained with our proposals outperforms the OpenPose baseline over 4.9%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信