利用神经网络的链路权值检测机器人搜索运动的运动约束

H. Seki, K. Sasaki, M. Takano
{"title":"利用神经网络的链路权值检测机器人搜索运动的运动约束","authors":"H. Seki, K. Sasaki, M. Takano","doi":"10.1109/IROS.1995.525931","DOIUrl":null,"url":null,"abstract":"In this paper, a method for detecting kinematic constraints in a plane when the shapes of the grasped object and the environment are not given is presented. This method utilizes the displacement and force information obtained by \"active search motion\" of a robot. A new neural network configuration for this detection is proposed. It consists of two multilayer networks (primary and secondary network). The primary network learns the movable space (constraint) obtained by the search motion. By the generated link weights which reflect the movable space, the secondary network determines the type and the orientation of the constraint. Simulation and experimental results are presented and analyzed.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of kinematic constraint from search motion of a robot using link weights of a neural network\",\"authors\":\"H. Seki, K. Sasaki, M. Takano\",\"doi\":\"10.1109/IROS.1995.525931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a method for detecting kinematic constraints in a plane when the shapes of the grasped object and the environment are not given is presented. This method utilizes the displacement and force information obtained by \\\"active search motion\\\" of a robot. A new neural network configuration for this detection is proposed. It consists of two multilayer networks (primary and secondary network). The primary network learns the movable space (constraint) obtained by the search motion. By the generated link weights which reflect the movable space, the secondary network determines the type and the orientation of the constraint. Simulation and experimental results are presented and analyzed.\",\"PeriodicalId\":124483,\"journal\":{\"name\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1995.525931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在被抓物体形状和环境不确定的情况下,检测平面运动约束的方法。该方法利用机器人“主动搜索运动”获得的位移和力信息。为此提出了一种新的神经网络结构。它由两个多层网络(主网络和从网络)组成。主网络学习由搜索运动获得的可移动空间(约束)。次级网络通过生成反映可移动空间的链路权值来确定约束的类型和方向。给出了仿真和实验结果并进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of kinematic constraint from search motion of a robot using link weights of a neural network
In this paper, a method for detecting kinematic constraints in a plane when the shapes of the grasped object and the environment are not given is presented. This method utilizes the displacement and force information obtained by "active search motion" of a robot. A new neural network configuration for this detection is proposed. It consists of two multilayer networks (primary and secondary network). The primary network learns the movable space (constraint) obtained by the search motion. By the generated link weights which reflect the movable space, the secondary network determines the type and the orientation of the constraint. Simulation and experimental results are presented and analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信