用过度近似否定终止

B. Cook, Carsten Fuhs, K. Nimkar, P. O'Hearn
{"title":"用过度近似否定终止","authors":"B. Cook, Carsten Fuhs, K. Nimkar, P. O'Hearn","doi":"10.1109/FMCAD.2014.6987597","DOIUrl":null,"url":null,"abstract":"When disproving termination using known techniques (e.g. recurrence sets), abstractions that overapproximate the program's transition relation are unsound. In this paper we introduce live abstractions, a natural class of abstractions that can be combined with the recent concept of closed recurrence sets to soundly disprove termination. To demonstrate the practical usefulness of this new approach we show how programs with nonlinear, nondeterministic, and heap-based commands can be shown nonterminating using linear overapproximations.","PeriodicalId":363683,"journal":{"name":"2014 Formal Methods in Computer-Aided Design (FMCAD)","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Disproving termination with overapproximation\",\"authors\":\"B. Cook, Carsten Fuhs, K. Nimkar, P. O'Hearn\",\"doi\":\"10.1109/FMCAD.2014.6987597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When disproving termination using known techniques (e.g. recurrence sets), abstractions that overapproximate the program's transition relation are unsound. In this paper we introduce live abstractions, a natural class of abstractions that can be combined with the recent concept of closed recurrence sets to soundly disprove termination. To demonstrate the practical usefulness of this new approach we show how programs with nonlinear, nondeterministic, and heap-based commands can be shown nonterminating using linear overapproximations.\",\"PeriodicalId\":363683,\"journal\":{\"name\":\"2014 Formal Methods in Computer-Aided Design (FMCAD)\",\"volume\":\"279 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Formal Methods in Computer-Aided Design (FMCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMCAD.2014.6987597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Formal Methods in Computer-Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2014.6987597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

当使用已知技术(如递归集)证明终止时,过度近似程序转换关系的抽象是不合理的。在本文中,我们引入了活抽象,这是一类自然的抽象,它可以与最近的闭递归集概念相结合,以完全否定终止。为了演示这种新方法的实际用途,我们展示了如何使用线性过逼近显示具有非线性、不确定性和基于堆的命令的程序是非终止的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disproving termination with overapproximation
When disproving termination using known techniques (e.g. recurrence sets), abstractions that overapproximate the program's transition relation are unsound. In this paper we introduce live abstractions, a natural class of abstractions that can be combined with the recent concept of closed recurrence sets to soundly disprove termination. To demonstrate the practical usefulness of this new approach we show how programs with nonlinear, nondeterministic, and heap-based commands can be shown nonterminating using linear overapproximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信