用于4F2高密度集成的具有BEOL 3D单片集成IGZO晶体管的非破坏性读取1T1C铁电电容存储电池

Zuopu Zhou, Leming Jiao, Qiwen Kong, Zijie Zheng, Kaizhen Han, Yue Chen, Chen Sun, Bich-Yen Nguyen, Xiao-Qing Gong
{"title":"用于4F2高密度集成的具有BEOL 3D单片集成IGZO晶体管的非破坏性读取1T1C铁电电容存储电池","authors":"Zuopu Zhou, Leming Jiao, Qiwen Kong, Zijie Zheng, Kaizhen Han, Yue Chen, Chen Sun, Bich-Yen Nguyen, Xiao-Qing Gong","doi":"10.23919/VLSITechnologyandCir57934.2023.10185243","DOIUrl":null,"url":null,"abstract":"For the first time, we experimentally demonstrate a 1T1C ferroelectric capacitive memory (FCM) cell by vertically stacking the high-performance inversion-type FCM with the back-end-of-line (BEOL) IGZO channel access transistor having SS of 70 mV/decade. Based on the 1T1C configuration, we design and demonstrate a reading scheme by charge sharing between FCM and bit line capacitor. Thanks to the low write current of FCM, IGZO FET can provide sufficient current for the effective write operation even in highly scaled cells. With the 3D monolithic integration capability of IGZO FETs, we further propose a 1T1C FCM array structure to realize the highest density with $4\\mathrm{F}^{2}1 \\mathrm{T}1\\mathrm{C}$ cell size by stacking two layers of IGZO access transistors on top of the memory. We also validate the operation of the highly scaled $4\\mathrm{F}^{2}1 \\mathrm{T}1\\mathrm{C}$ cell with experiment-calibrated TCAD and SPICE simulation and predict that the 1T1C configuration is able to improve the delay and energy consumption by 87 times and 92 times respectively in the large-scale array compared with the FCM crossbar.","PeriodicalId":317958,"journal":{"name":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Destructive-Read 1T1C Ferroelectric Capacitive Memory Cell with BEOL 3D Monolithically Integrated IGZO Access Transistor for 4F2 High-Density Integration\",\"authors\":\"Zuopu Zhou, Leming Jiao, Qiwen Kong, Zijie Zheng, Kaizhen Han, Yue Chen, Chen Sun, Bich-Yen Nguyen, Xiao-Qing Gong\",\"doi\":\"10.23919/VLSITechnologyandCir57934.2023.10185243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, we experimentally demonstrate a 1T1C ferroelectric capacitive memory (FCM) cell by vertically stacking the high-performance inversion-type FCM with the back-end-of-line (BEOL) IGZO channel access transistor having SS of 70 mV/decade. Based on the 1T1C configuration, we design and demonstrate a reading scheme by charge sharing between FCM and bit line capacitor. Thanks to the low write current of FCM, IGZO FET can provide sufficient current for the effective write operation even in highly scaled cells. With the 3D monolithic integration capability of IGZO FETs, we further propose a 1T1C FCM array structure to realize the highest density with $4\\\\mathrm{F}^{2}1 \\\\mathrm{T}1\\\\mathrm{C}$ cell size by stacking two layers of IGZO access transistors on top of the memory. We also validate the operation of the highly scaled $4\\\\mathrm{F}^{2}1 \\\\mathrm{T}1\\\\mathrm{C}$ cell with experiment-calibrated TCAD and SPICE simulation and predict that the 1T1C configuration is able to improve the delay and energy consumption by 87 times and 92 times respectively in the large-scale array compared with the FCM crossbar.\",\"PeriodicalId\":317958,\"journal\":{\"name\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们首次通过将高性能反转型FCM与SS为70 mV/ 10的后端IGZO通道接入晶体管垂直堆叠,实验证明了1T1C铁电电容性存储器(FCM)电池。基于1T1C结构,我们设计并演示了FCM和位线电容之间的电荷共享读取方案。由于FCM的低写入电流,IGZO FET即使在高度缩放的单元中也可以为有效的写入操作提供足够的电流。利用IGZO FCM的三维单片集成能力,我们进一步提出了一种1T1C FCM阵列结构,通过在存储器上堆叠两层IGZO存取晶体管,实现$4\ mathm {F}^{2}1 \ mathm {T}1\ mathm {C}$单元尺寸的最高密度。我们还通过实验校准的TCAD和SPICE模拟验证了大尺度的$4\ mathm {F}^{2}1 \ mathm {T}1\ mathm {C}$单元的运行,并预测1T1C配置在大规模阵列中比FCM交叉杆分别提高了87倍和92倍的延迟和能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Destructive-Read 1T1C Ferroelectric Capacitive Memory Cell with BEOL 3D Monolithically Integrated IGZO Access Transistor for 4F2 High-Density Integration
For the first time, we experimentally demonstrate a 1T1C ferroelectric capacitive memory (FCM) cell by vertically stacking the high-performance inversion-type FCM with the back-end-of-line (BEOL) IGZO channel access transistor having SS of 70 mV/decade. Based on the 1T1C configuration, we design and demonstrate a reading scheme by charge sharing between FCM and bit line capacitor. Thanks to the low write current of FCM, IGZO FET can provide sufficient current for the effective write operation even in highly scaled cells. With the 3D monolithic integration capability of IGZO FETs, we further propose a 1T1C FCM array structure to realize the highest density with $4\mathrm{F}^{2}1 \mathrm{T}1\mathrm{C}$ cell size by stacking two layers of IGZO access transistors on top of the memory. We also validate the operation of the highly scaled $4\mathrm{F}^{2}1 \mathrm{T}1\mathrm{C}$ cell with experiment-calibrated TCAD and SPICE simulation and predict that the 1T1C configuration is able to improve the delay and energy consumption by 87 times and 92 times respectively in the large-scale array compared with the FCM crossbar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信