模糊联想记忆驱动的知识整合方法

Myoung-Jong Kim, Ingoo Han, K. Lee
{"title":"模糊联想记忆驱动的知识整合方法","authors":"Myoung-Jong Kim, Ingoo Han, K. Lee","doi":"10.1109/FUZZY.1999.793254","DOIUrl":null,"url":null,"abstract":"We propose a knowledge integration mechanism that yields a cooperated knowledge by integrating user knowledge, expert knowledge and machine knowledge within the fuzzy logic-driven framework, and then refines it with a fuzzy associative memory (FAM) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Experimental results show that the FAM-driven approach can enhance the reasoning performance by refining the cooperated knowledge of fuzzy logic-driven framework. This result means that the FAM-driven approach can be a robust guidance for knowledge integration.","PeriodicalId":344788,"journal":{"name":"FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fuzzy associative memory-driven approach to knowledge integration\",\"authors\":\"Myoung-Jong Kim, Ingoo Han, K. Lee\",\"doi\":\"10.1109/FUZZY.1999.793254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a knowledge integration mechanism that yields a cooperated knowledge by integrating user knowledge, expert knowledge and machine knowledge within the fuzzy logic-driven framework, and then refines it with a fuzzy associative memory (FAM) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Experimental results show that the FAM-driven approach can enhance the reasoning performance by refining the cooperated knowledge of fuzzy logic-driven framework. This result means that the FAM-driven approach can be a robust guidance for knowledge integration.\",\"PeriodicalId\":344788,\"journal\":{\"name\":\"FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1999.793254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1999.793254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种知识集成机制,在模糊逻辑驱动框架内,通过对用户知识、专家知识和机器知识进行集成,生成协同知识,然后利用模糊联想记忆(FAM)对其进行细化,提高推理性能。将提出的知识整合机制应用于韩国股票价格指数(KOSPI)的预测。实验结果表明,fam驱动方法通过对模糊逻辑驱动框架的协同知识进行细化,可以提高推理性能。这一结果意味着fam驱动的方法可以成为知识集成的健壮指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy associative memory-driven approach to knowledge integration
We propose a knowledge integration mechanism that yields a cooperated knowledge by integrating user knowledge, expert knowledge and machine knowledge within the fuzzy logic-driven framework, and then refines it with a fuzzy associative memory (FAM) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Experimental results show that the FAM-driven approach can enhance the reasoning performance by refining the cooperated knowledge of fuzzy logic-driven framework. This result means that the FAM-driven approach can be a robust guidance for knowledge integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信