具有(0,1)阶导数的正则分数阶Sturm-Liouville问题

M. Klimek, O. Agrawal
{"title":"具有(0,1)阶导数的正则分数阶Sturm-Liouville问题","authors":"M. Klimek, O. Agrawal","doi":"10.1109/CARPATHIANCC.2012.6228655","DOIUrl":null,"url":null,"abstract":"In this paper, we define a Fractional Sturm-Liouville Operator (FSLO), introduce a regular Fractional Sturm-Liouville Problem (FSLP), and investigate the properties of the eigenfunctions and the eigenvalues of the operator. We demonstrate that these properties are similar and in some cases identical to those for Integer Sturm-Liouville Operator. We briefly introduce a Reflected Fractional Sturm-Liouville Operator (RFSLO) and demonstrate that neither the FSLO nor the RFSLO are symmetric. We shall consider the topic of reflection symmetry in a subsequent paper.","PeriodicalId":334936,"journal":{"name":"Proceedings of the 13th International Carpathian Control Conference (ICCC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"On a Regular Fractional Sturm-Liouville Problem with derivatives of order in (0,1)\",\"authors\":\"M. Klimek, O. Agrawal\",\"doi\":\"10.1109/CARPATHIANCC.2012.6228655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we define a Fractional Sturm-Liouville Operator (FSLO), introduce a regular Fractional Sturm-Liouville Problem (FSLP), and investigate the properties of the eigenfunctions and the eigenvalues of the operator. We demonstrate that these properties are similar and in some cases identical to those for Integer Sturm-Liouville Operator. We briefly introduce a Reflected Fractional Sturm-Liouville Operator (RFSLO) and demonstrate that neither the FSLO nor the RFSLO are symmetric. We shall consider the topic of reflection symmetry in a subsequent paper.\",\"PeriodicalId\":334936,\"journal\":{\"name\":\"Proceedings of the 13th International Carpathian Control Conference (ICCC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Carpathian Control Conference (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CARPATHIANCC.2012.6228655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPATHIANCC.2012.6228655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

本文定义了分数阶Sturm-Liouville算子(FSLO),引入了正则分数阶Sturm-Liouville问题(FSLP),研究了该算子的特征函数和特征值的性质。我们证明这些性质与整数Sturm-Liouville算子的性质相似,在某些情况下是相同的。我们简要地介绍了反射分数阶Sturm-Liouville算子(RFSLO),并证明了RFSLO和RFSLO都不是对称的。我们将在以后的一篇论文中考虑反射对称的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Regular Fractional Sturm-Liouville Problem with derivatives of order in (0,1)
In this paper, we define a Fractional Sturm-Liouville Operator (FSLO), introduce a regular Fractional Sturm-Liouville Problem (FSLP), and investigate the properties of the eigenfunctions and the eigenvalues of the operator. We demonstrate that these properties are similar and in some cases identical to those for Integer Sturm-Liouville Operator. We briefly introduce a Reflected Fractional Sturm-Liouville Operator (RFSLO) and demonstrate that neither the FSLO nor the RFSLO are symmetric. We shall consider the topic of reflection symmetry in a subsequent paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信