简约的实时单目SLAM

Guillaume Bresson, T. Féraud, R. Aufrère, P. Checchin, R. Chapuis
{"title":"简约的实时单目SLAM","authors":"Guillaume Bresson, T. Féraud, R. Aufrère, P. Checchin, R. Chapuis","doi":"10.1109/IVS.2012.6232203","DOIUrl":null,"url":null,"abstract":"This paper presents a real time monocular EKF SLAM process that uses only Cartesian defined landmarks. This representation is easy to handle, light and consequently fast. However, it is prone to linearization errors which can cause the filter to diverge. Here, we will first clearly identify and explain when those problems take place. Then, a solution, able to reduce or avoid the errors involved by the linearization process, will be proposed. Combined with an EKF, our method uses resources parsimoniously by conserving landmarks for a long period of time without requiring many points to be efficient. Our solution is based on a method to properly compute the projection of a 3D uncertainty into the image frame in order to track landmarks efficiently. The second part of this solution relies on a correction of the Kalman gain that reduces the impact of the update when it is incoherent. This approach was applied to a real data set presenting difficult conditions such as severe distortions, reflections, blur or sunshine to illustrate its robustness.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Parsimonious real time monocular SLAM\",\"authors\":\"Guillaume Bresson, T. Féraud, R. Aufrère, P. Checchin, R. Chapuis\",\"doi\":\"10.1109/IVS.2012.6232203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a real time monocular EKF SLAM process that uses only Cartesian defined landmarks. This representation is easy to handle, light and consequently fast. However, it is prone to linearization errors which can cause the filter to diverge. Here, we will first clearly identify and explain when those problems take place. Then, a solution, able to reduce or avoid the errors involved by the linearization process, will be proposed. Combined with an EKF, our method uses resources parsimoniously by conserving landmarks for a long period of time without requiring many points to be efficient. Our solution is based on a method to properly compute the projection of a 3D uncertainty into the image frame in order to track landmarks efficiently. The second part of this solution relies on a correction of the Kalman gain that reduces the impact of the update when it is incoherent. This approach was applied to a real data set presenting difficult conditions such as severe distortions, reflections, blur or sunshine to illustrate its robustness.\",\"PeriodicalId\":402389,\"journal\":{\"name\":\"2012 IEEE Intelligent Vehicles Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2012.6232203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种仅使用笛卡尔定义的地标的实时单目EKF SLAM过程。这种表现形式易于处理,轻巧,因此速度很快。然而,它容易产生线性化误差,从而导致滤波器发散。在这里,我们将首先清楚地识别和解释这些问题何时发生。然后,提出一种能够减少或避免线性化过程所涉及的误差的解决方案。结合EKF,我们的方法通过长时间保存地标而不需要很多点来提高效率,从而节省了资源。我们的解决方案是基于一种正确计算3D不确定性投影到图像帧中的方法,以便有效地跟踪地标。该解决方案的第二部分依赖于卡尔曼增益的修正,当它不连贯时,卡尔曼增益减少了更新的影响。这种方法被应用于一个真实的数据集,呈现困难的条件,如严重的扭曲,反射,模糊或阳光,以说明其鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parsimonious real time monocular SLAM
This paper presents a real time monocular EKF SLAM process that uses only Cartesian defined landmarks. This representation is easy to handle, light and consequently fast. However, it is prone to linearization errors which can cause the filter to diverge. Here, we will first clearly identify and explain when those problems take place. Then, a solution, able to reduce or avoid the errors involved by the linearization process, will be proposed. Combined with an EKF, our method uses resources parsimoniously by conserving landmarks for a long period of time without requiring many points to be efficient. Our solution is based on a method to properly compute the projection of a 3D uncertainty into the image frame in order to track landmarks efficiently. The second part of this solution relies on a correction of the Kalman gain that reduces the impact of the update when it is incoherent. This approach was applied to a real data set presenting difficult conditions such as severe distortions, reflections, blur or sunshine to illustrate its robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信