电路和工艺协同设计与垂直栅极全方位纳米线场效应管技术,以扩展CMOS缩放5nm及以上的技术

T. H. Bao, D. Yakimets, J. Ryckaert, I. Ciofi, R. Baert, A. Veloso, J. Bömmels, N. Collaert, P. Roussel, S. Demuynck, P. Raghavan, A. Mercha, Z. Tokei, D. Verkest, A. Thean, P. Wambacq
{"title":"电路和工艺协同设计与垂直栅极全方位纳米线场效应管技术,以扩展CMOS缩放5nm及以上的技术","authors":"T. H. Bao, D. Yakimets, J. Ryckaert, I. Ciofi, R. Baert, A. Veloso, J. Bömmels, N. Collaert, P. Roussel, S. Demuynck, P. Raghavan, A. Mercha, Z. Tokei, D. Verkest, A. Thean, P. Wambacq","doi":"10.1109/ESSDERC.2014.6948768","DOIUrl":null,"url":null,"abstract":"This paper presents a vertical gate-all-around nanowire FET (VFET) architecture targeting 5nm and beyond technologies, and a new standard-cell construct for digital flow implementation. VFET technology circuits and parasitics for processes and design features aligned with 5nm CMOS are systematically assessed for the first time. Self-aligned quadruple pattering (SAQP) is implemented to achieve required 12nm half-pitch interconnects, and the worst case RC delay corner is 1.4X slower than best case corner. Our work shows that interconnect delay variability of a wire of average length in SoCs can overwhelm device variability. Consequently, a new device architecture with a smaller footprint as VFET would effectively lower the BEOL variability by shortening the wirelength and help SRAM bit cells to follow 50% area scaling trend. It is shown that a VFET-based D Flip-Flop (DFF) and 6T-SRAM cell can offer 30% smaller layout area than FinFET (or equivalent lateral 2D) based designs. Furthermore, we obtain a 19% reduction in routing area of a 32-bit multiplier implemented with a VFET-based standard-cell library w.r.t. the FinFET design.","PeriodicalId":262652,"journal":{"name":"2014 44th European Solid State Device Research Conference (ESSDERC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Circuit and process co-design with vertical gate-all-around nanowire FET technology to extend CMOS scaling for 5nm and beyond technologies\",\"authors\":\"T. H. Bao, D. Yakimets, J. Ryckaert, I. Ciofi, R. Baert, A. Veloso, J. Bömmels, N. Collaert, P. Roussel, S. Demuynck, P. Raghavan, A. Mercha, Z. Tokei, D. Verkest, A. Thean, P. Wambacq\",\"doi\":\"10.1109/ESSDERC.2014.6948768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a vertical gate-all-around nanowire FET (VFET) architecture targeting 5nm and beyond technologies, and a new standard-cell construct for digital flow implementation. VFET technology circuits and parasitics for processes and design features aligned with 5nm CMOS are systematically assessed for the first time. Self-aligned quadruple pattering (SAQP) is implemented to achieve required 12nm half-pitch interconnects, and the worst case RC delay corner is 1.4X slower than best case corner. Our work shows that interconnect delay variability of a wire of average length in SoCs can overwhelm device variability. Consequently, a new device architecture with a smaller footprint as VFET would effectively lower the BEOL variability by shortening the wirelength and help SRAM bit cells to follow 50% area scaling trend. It is shown that a VFET-based D Flip-Flop (DFF) and 6T-SRAM cell can offer 30% smaller layout area than FinFET (or equivalent lateral 2D) based designs. Furthermore, we obtain a 19% reduction in routing area of a 32-bit multiplier implemented with a VFET-based standard-cell library w.r.t. the FinFET design.\",\"PeriodicalId\":262652,\"journal\":{\"name\":\"2014 44th European Solid State Device Research Conference (ESSDERC)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 44th European Solid State Device Research Conference (ESSDERC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2014.6948768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 44th European Solid State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2014.6948768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

本文提出了一种针对5nm及以上技术的垂直栅极全能纳米线场效应管(VFET)架构,以及一种用于数字流实现的新标准单元结构。首次系统地评估了与5nm CMOS相匹配的VFET技术电路及其工艺和设计特性。自对准四重模式(SAQP)实现了所需的12nm半间距互连,最坏情况下RC延迟角比最佳情况慢1.4倍。我们的工作表明,soc中平均长度导线的互连延迟可变性可以压倒器件可变性。因此,具有更小占地的VFET的新器件架构将通过缩短波长有效降低BEOL可变性,并帮助SRAM位单元遵循50%的面积缩放趋势。结果表明,基于vfet的D触发器(DFF)和6T-SRAM单元可以提供比基于FinFET(或等效的横向2D)的设计小30%的布局面积。此外,采用基于vfet的标准单元库实现的32位乘法器的路由面积减少了19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Circuit and process co-design with vertical gate-all-around nanowire FET technology to extend CMOS scaling for 5nm and beyond technologies
This paper presents a vertical gate-all-around nanowire FET (VFET) architecture targeting 5nm and beyond technologies, and a new standard-cell construct for digital flow implementation. VFET technology circuits and parasitics for processes and design features aligned with 5nm CMOS are systematically assessed for the first time. Self-aligned quadruple pattering (SAQP) is implemented to achieve required 12nm half-pitch interconnects, and the worst case RC delay corner is 1.4X slower than best case corner. Our work shows that interconnect delay variability of a wire of average length in SoCs can overwhelm device variability. Consequently, a new device architecture with a smaller footprint as VFET would effectively lower the BEOL variability by shortening the wirelength and help SRAM bit cells to follow 50% area scaling trend. It is shown that a VFET-based D Flip-Flop (DFF) and 6T-SRAM cell can offer 30% smaller layout area than FinFET (or equivalent lateral 2D) based designs. Furthermore, we obtain a 19% reduction in routing area of a 32-bit multiplier implemented with a VFET-based standard-cell library w.r.t. the FinFET design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信