{"title":"一维局部不连续伽勒金方法的冯·诺伊曼分析","authors":"P. Castillo, S. Gómez","doi":"10.18273/revint.v37n2-2019001","DOIUrl":null,"url":null,"abstract":"Using the von Neumann analysis as a theoretical tool, an analysisof the stability conditions of some explicit time marching schemes, in com-bination with the spatial discretizationLocal Discontinuous Galerkin(LDG)and high order approximations, is presented. The stabilityconstant, CFL(Courant-Friedrichs-Lewy), is studied as a function of theLDG parametersand the approximation degree. A series of numerical experiments is carriedout to validate the theoretical results.","PeriodicalId":402331,"journal":{"name":"Revista Integración","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Análisis de Von Neumann para el métodoLocal Discontinuous Galerkin en 1D\",\"authors\":\"P. Castillo, S. Gómez\",\"doi\":\"10.18273/revint.v37n2-2019001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the von Neumann analysis as a theoretical tool, an analysisof the stability conditions of some explicit time marching schemes, in com-bination with the spatial discretizationLocal Discontinuous Galerkin(LDG)and high order approximations, is presented. The stabilityconstant, CFL(Courant-Friedrichs-Lewy), is studied as a function of theLDG parametersand the approximation degree. A series of numerical experiments is carriedout to validate the theoretical results.\",\"PeriodicalId\":402331,\"journal\":{\"name\":\"Revista Integración\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Integración\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revint.v37n2-2019001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Integración","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revint.v37n2-2019001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Análisis de Von Neumann para el métodoLocal Discontinuous Galerkin en 1D
Using the von Neumann analysis as a theoretical tool, an analysisof the stability conditions of some explicit time marching schemes, in com-bination with the spatial discretizationLocal Discontinuous Galerkin(LDG)and high order approximations, is presented. The stabilityconstant, CFL(Courant-Friedrichs-Lewy), is studied as a function of theLDG parametersand the approximation degree. A series of numerical experiments is carriedout to validate the theoretical results.