图像检索的类haar局部三元模式

Megha Agarwal, A. Singhal
{"title":"图像检索的类haar局部三元模式","authors":"Megha Agarwal, A. Singhal","doi":"10.1109/ICIINFS.2018.8721387","DOIUrl":null,"url":null,"abstract":"In this paper a novel Haar-like local ternary pattern (HLTP) is introduced for content based image retrieval. Many variants of local patterns like LBP, LTP etc. ignore the high pass information present in an image. The proposed HLTP feature not only extracts this information but the best suited Haar-like filter is also selected to represent the high pass information. Selection of only the best filter reduces the complexity of the feature. Then, in order to capture the structural similarity within the image, local ternary edges are computed in 3×3 neighborhood for each pixel of the dominant filter image. Hue and saturation histograms are concatenated with the HLTP feature to make it robust against color variations. Experiments are conducted on two diversified datasets and performance of proposed method is compared with the existing methods.","PeriodicalId":397083,"journal":{"name":"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Haar-like Local Ternary Pattern for Image Retrieval\",\"authors\":\"Megha Agarwal, A. Singhal\",\"doi\":\"10.1109/ICIINFS.2018.8721387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel Haar-like local ternary pattern (HLTP) is introduced for content based image retrieval. Many variants of local patterns like LBP, LTP etc. ignore the high pass information present in an image. The proposed HLTP feature not only extracts this information but the best suited Haar-like filter is also selected to represent the high pass information. Selection of only the best filter reduces the complexity of the feature. Then, in order to capture the structural similarity within the image, local ternary edges are computed in 3×3 neighborhood for each pixel of the dominant filter image. Hue and saturation histograms are concatenated with the HLTP feature to make it robust against color variations. Experiments are conducted on two diversified datasets and performance of proposed method is compared with the existing methods.\",\"PeriodicalId\":397083,\"journal\":{\"name\":\"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2018.8721387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2018.8721387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的类哈尔局部三元模式(HLTP),用于基于内容的图像检索。许多局部模式的变体,如LBP、LTP等,忽略了图像中存在的高通信息。提出的http特性不仅提取了这些信息,而且还选择了最适合的haar类滤波器来表示高通信息。只选择最佳滤波器可以降低特征的复杂性。然后,为了捕获图像内的结构相似性,在3×3邻域中对优势滤波图像的每个像素计算局部三元边。色相和饱和度直方图与http特性相连接,使其对颜色变化具有鲁棒性。在两个不同的数据集上进行了实验,并与现有方法进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Haar-like Local Ternary Pattern for Image Retrieval
In this paper a novel Haar-like local ternary pattern (HLTP) is introduced for content based image retrieval. Many variants of local patterns like LBP, LTP etc. ignore the high pass information present in an image. The proposed HLTP feature not only extracts this information but the best suited Haar-like filter is also selected to represent the high pass information. Selection of only the best filter reduces the complexity of the feature. Then, in order to capture the structural similarity within the image, local ternary edges are computed in 3×3 neighborhood for each pixel of the dominant filter image. Hue and saturation histograms are concatenated with the HLTP feature to make it robust against color variations. Experiments are conducted on two diversified datasets and performance of proposed method is compared with the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信