{"title":"工艺变化对CMOS数据转换器ΔIDDQ测试的影响","authors":"R. Soundararajan, A. Srivastava, S. Yellampalli","doi":"10.1109/MWSCAS.2010.5548793","DOIUrl":null,"url":null,"abstract":"We present, implementation of a built-in current sensor (BICS) which takes into account the increased background current of defect-free circuits and the effects of process variation on ?IDDQ testing of CMOS data converters. A 12-bit digital-to-analog converter (DAC) is designed as the circuit under test (CUT). The BICS uses frequency as the output for fault detection in CUT. A fault is detected if it causes the output frequency to deviate more than ±10% from the reference frequency. The output frequencies of the BICS for various (MOSIS) model parameters are simulated to check for the effect of process variation on the frequency deviation. A set of eight faults simulating manufacturing defects in CMOS data converters are injected using fault-injection transistors and tested successfully.","PeriodicalId":245322,"journal":{"name":"2010 53rd IEEE International Midwest Symposium on Circuits and Systems","volume":"2006 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Process variation effects on ΔIDDQ testing of CMOS data converters\",\"authors\":\"R. Soundararajan, A. Srivastava, S. Yellampalli\",\"doi\":\"10.1109/MWSCAS.2010.5548793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present, implementation of a built-in current sensor (BICS) which takes into account the increased background current of defect-free circuits and the effects of process variation on ?IDDQ testing of CMOS data converters. A 12-bit digital-to-analog converter (DAC) is designed as the circuit under test (CUT). The BICS uses frequency as the output for fault detection in CUT. A fault is detected if it causes the output frequency to deviate more than ±10% from the reference frequency. The output frequencies of the BICS for various (MOSIS) model parameters are simulated to check for the effect of process variation on the frequency deviation. A set of eight faults simulating manufacturing defects in CMOS data converters are injected using fault-injection transistors and tested successfully.\",\"PeriodicalId\":245322,\"journal\":{\"name\":\"2010 53rd IEEE International Midwest Symposium on Circuits and Systems\",\"volume\":\"2006 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 53rd IEEE International Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2010.5548793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 53rd IEEE International Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2010.5548793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Process variation effects on ΔIDDQ testing of CMOS data converters
We present, implementation of a built-in current sensor (BICS) which takes into account the increased background current of defect-free circuits and the effects of process variation on ?IDDQ testing of CMOS data converters. A 12-bit digital-to-analog converter (DAC) is designed as the circuit under test (CUT). The BICS uses frequency as the output for fault detection in CUT. A fault is detected if it causes the output frequency to deviate more than ±10% from the reference frequency. The output frequencies of the BICS for various (MOSIS) model parameters are simulated to check for the effect of process variation on the frequency deviation. A set of eight faults simulating manufacturing defects in CMOS data converters are injected using fault-injection transistors and tested successfully.