使用生成对抗网络的超分辨率医学图像

Awad O. A. Mohamed, K. H. Salih, Hiba H. S. M. Ali
{"title":"使用生成对抗网络的超分辨率医学图像","authors":"Awad O. A. Mohamed, K. H. Salih, Hiba H. S. M. Ali","doi":"10.1109/ICCCEEE49695.2021.9429656","DOIUrl":null,"url":null,"abstract":"This paper aims to present a new model called SRMIGAN that performs super-resolution for MRI and CT medical images to help doctors reach a better diagnosis. This model, SRMIGAN adopts deep learning by applying generative adversarial networks technique. It is developed using MSE loss and by exploiting different optimization techniques. This model is compared to other adopted models by using both objective and subjective metrics. Hence PSNR, SSIM, and mean opinion score results are included. The results show that our model beats the other examined models.","PeriodicalId":359802,"journal":{"name":"2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super Resolution of Medical Images Using Generative Adversarial Networks\",\"authors\":\"Awad O. A. Mohamed, K. H. Salih, Hiba H. S. M. Ali\",\"doi\":\"10.1109/ICCCEEE49695.2021.9429656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to present a new model called SRMIGAN that performs super-resolution for MRI and CT medical images to help doctors reach a better diagnosis. This model, SRMIGAN adopts deep learning by applying generative adversarial networks technique. It is developed using MSE loss and by exploiting different optimization techniques. This model is compared to other adopted models by using both objective and subjective metrics. Hence PSNR, SSIM, and mean opinion score results are included. The results show that our model beats the other examined models.\",\"PeriodicalId\":359802,\"journal\":{\"name\":\"2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCEEE49695.2021.9429656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCEEE49695.2021.9429656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在介绍一种名为SRMIGAN的新模型,该模型可以对MRI和CT医学图像进行超分辨率处理,以帮助医生更好地进行诊断。该模型通过应用生成对抗网络技术采用深度学习。它是利用MSE损失和利用不同的优化技术开发的。通过使用客观和主观度量,将该模型与其他采用的模型进行比较。因此,PSNR, SSIM和平均意见评分结果包括在内。结果表明,我们的模型优于其他已检验的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super Resolution of Medical Images Using Generative Adversarial Networks
This paper aims to present a new model called SRMIGAN that performs super-resolution for MRI and CT medical images to help doctors reach a better diagnosis. This model, SRMIGAN adopts deep learning by applying generative adversarial networks technique. It is developed using MSE loss and by exploiting different optimization techniques. This model is compared to other adopted models by using both objective and subjective metrics. Hence PSNR, SSIM, and mean opinion score results are included. The results show that our model beats the other examined models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信