Jacob Murray, Rajath Hegde, Teng Lu, P. Pande, B. Shirazi
{"title":"具有片上无线链路的可持续双电平dvfs NoC","authors":"Jacob Murray, Rajath Hegde, Teng Lu, P. Pande, B. Shirazi","doi":"10.1109/ISQED.2013.6523601","DOIUrl":null,"url":null,"abstract":"Wireless Network-on-Chip (WiNoC) has emerged as an enabling technology to design low power and high bandwidth massive multi-core chips. The performance advantages mainly stem from using the wireless links as long-range shortcuts between far apart cores. This performance gain can be enhanced further if the characteristics of the wireline links and the processing cores of the WiNoC are optimized according to the traffic patterns and workloads. In this work, we demonstrate that by incorporating both processor- and network-level dynamic voltage and frequency scaling (DVFS) in a WiNoC, the power and thermal profiles can be enhanced without a significant impact on the overall execution time. We also show that depending on the benchmark applications, temperature hotspots can be formed either in the processing core or in the network infrastructure. The proposed dual-level DVFS is capable of addressing both.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"464 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Sustainable dual-level DVFS-enabled NoC with on-chip wireless links\",\"authors\":\"Jacob Murray, Rajath Hegde, Teng Lu, P. Pande, B. Shirazi\",\"doi\":\"10.1109/ISQED.2013.6523601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Network-on-Chip (WiNoC) has emerged as an enabling technology to design low power and high bandwidth massive multi-core chips. The performance advantages mainly stem from using the wireless links as long-range shortcuts between far apart cores. This performance gain can be enhanced further if the characteristics of the wireline links and the processing cores of the WiNoC are optimized according to the traffic patterns and workloads. In this work, we demonstrate that by incorporating both processor- and network-level dynamic voltage and frequency scaling (DVFS) in a WiNoC, the power and thermal profiles can be enhanced without a significant impact on the overall execution time. We also show that depending on the benchmark applications, temperature hotspots can be formed either in the processing core or in the network infrastructure. The proposed dual-level DVFS is capable of addressing both.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"464 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sustainable dual-level DVFS-enabled NoC with on-chip wireless links
Wireless Network-on-Chip (WiNoC) has emerged as an enabling technology to design low power and high bandwidth massive multi-core chips. The performance advantages mainly stem from using the wireless links as long-range shortcuts between far apart cores. This performance gain can be enhanced further if the characteristics of the wireline links and the processing cores of the WiNoC are optimized according to the traffic patterns and workloads. In this work, we demonstrate that by incorporating both processor- and network-level dynamic voltage and frequency scaling (DVFS) in a WiNoC, the power and thermal profiles can be enhanced without a significant impact on the overall execution time. We also show that depending on the benchmark applications, temperature hotspots can be formed either in the processing core or in the network infrastructure. The proposed dual-level DVFS is capable of addressing both.