移动机器人路径规划的元启发式优化方法

Ahmed Hussein, Heba Mostafa, Mohamed Badrel-din, Osama Sultan, Alaa Khamis
{"title":"移动机器人路径规划的元启发式优化方法","authors":"Ahmed Hussein, Heba Mostafa, Mohamed Badrel-din, Osama Sultan, Alaa Khamis","doi":"10.1109/ICENGTECHNOL.2012.6396150","DOIUrl":null,"url":null,"abstract":"This paper presents a metaheuristic optimization-based approach to mobile robot path planning problem. A comparative study between trajectory-based metaheuristic optimization and population-based metaheuristic optimization is conducted. Breadth-first deterministic search is used to find the optimal solution (ground truth) that is compared to the paths generated by tabu search, simulated annealing and genetic algorithm. The experimental study shows that simulated annealing outperforms the other algorithms in terms of computational time while tabu search gives the shortest path.","PeriodicalId":149484,"journal":{"name":"2012 International Conference on Engineering and Technology (ICET)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Metaheuristic optimization approach to mobile robot path planning\",\"authors\":\"Ahmed Hussein, Heba Mostafa, Mohamed Badrel-din, Osama Sultan, Alaa Khamis\",\"doi\":\"10.1109/ICENGTECHNOL.2012.6396150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a metaheuristic optimization-based approach to mobile robot path planning problem. A comparative study between trajectory-based metaheuristic optimization and population-based metaheuristic optimization is conducted. Breadth-first deterministic search is used to find the optimal solution (ground truth) that is compared to the paths generated by tabu search, simulated annealing and genetic algorithm. The experimental study shows that simulated annealing outperforms the other algorithms in terms of computational time while tabu search gives the shortest path.\",\"PeriodicalId\":149484,\"journal\":{\"name\":\"2012 International Conference on Engineering and Technology (ICET)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Engineering and Technology (ICET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICENGTECHNOL.2012.6396150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Engineering and Technology (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICENGTECHNOL.2012.6396150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

提出了一种基于元启发式优化的移动机器人路径规划方法。对基于轨迹的元启发式优化和基于群体的元启发式优化进行了比较研究。采用广度优先的确定性搜索来寻找最优解(ground truth),并与禁忌搜索、模拟退火和遗传算法生成的路径进行比较。实验研究表明,模拟退火算法在计算时间上优于其他算法,而禁忌搜索算法给出的路径最短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metaheuristic optimization approach to mobile robot path planning
This paper presents a metaheuristic optimization-based approach to mobile robot path planning problem. A comparative study between trajectory-based metaheuristic optimization and population-based metaheuristic optimization is conducted. Breadth-first deterministic search is used to find the optimal solution (ground truth) that is compared to the paths generated by tabu search, simulated annealing and genetic algorithm. The experimental study shows that simulated annealing outperforms the other algorithms in terms of computational time while tabu search gives the shortest path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信