表列数据网络中延迟有理函数宏模型的有效无源验证

A. Charest, M. Nakhla, R. Achar
{"title":"表列数据网络中延迟有理函数宏模型的有效无源验证","authors":"A. Charest, M. Nakhla, R. Achar","doi":"10.1109/SPI.2010.5483556","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient passivity verification algorithm is presented for delayed rational function based macromodels obtained from tabulated scattering parameter data. The proposed approach is based on a new half-size frequency dependent generalized eigenvalue problem, which reduces the necessary search region to a single finite interval along the imaginary axis. Numerical results validating improved efficiency of the proposed algorithm over previous techniques are also presented.","PeriodicalId":293987,"journal":{"name":"2010 IEEE 14th Workshop on Signal Propagation on Interconnects","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient passivity verification of delayed rational function macromodels from networks characterized by tabulated data\",\"authors\":\"A. Charest, M. Nakhla, R. Achar\",\"doi\":\"10.1109/SPI.2010.5483556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an efficient passivity verification algorithm is presented for delayed rational function based macromodels obtained from tabulated scattering parameter data. The proposed approach is based on a new half-size frequency dependent generalized eigenvalue problem, which reduces the necessary search region to a single finite interval along the imaginary axis. Numerical results validating improved efficiency of the proposed algorithm over previous techniques are also presented.\",\"PeriodicalId\":293987,\"journal\":{\"name\":\"2010 IEEE 14th Workshop on Signal Propagation on Interconnects\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 14th Workshop on Signal Propagation on Interconnects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPI.2010.5483556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 14th Workshop on Signal Propagation on Interconnects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI.2010.5483556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对基于延迟有理函数的大模型,提出了一种有效的无源验证算法。该方法基于一种新的半尺寸频率相关广义特征值问题,将必要的搜索区域减小到沿虚轴的单个有限区间。数值结果也验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient passivity verification of delayed rational function macromodels from networks characterized by tabulated data
In this paper, an efficient passivity verification algorithm is presented for delayed rational function based macromodels obtained from tabulated scattering parameter data. The proposed approach is based on a new half-size frequency dependent generalized eigenvalue problem, which reduces the necessary search region to a single finite interval along the imaginary axis. Numerical results validating improved efficiency of the proposed algorithm over previous techniques are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信