自适应算法与耦合合谋

M. Banchio, Giacomo Mantegazza
{"title":"自适应算法与耦合合谋","authors":"M. Banchio, Giacomo Mantegazza","doi":"10.1145/3580507.3597726","DOIUrl":null,"url":null,"abstract":"Learning algorithms are proliferating in a variety of business contexts, ranging from automated bidding in online auctions to pricing on shopping platforms and setting rents. This diffusion has been accompanied by fears that such automation could facilitate collusion. A number of recent papers on algorithmic pricing show in simulations that learning algorithms coordinate on less-than-competitive outcomes.","PeriodicalId":210555,"journal":{"name":"Proceedings of the 24th ACM Conference on Economics and Computation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Algorithms and Collusion via Coupling\",\"authors\":\"M. Banchio, Giacomo Mantegazza\",\"doi\":\"10.1145/3580507.3597726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning algorithms are proliferating in a variety of business contexts, ranging from automated bidding in online auctions to pricing on shopping platforms and setting rents. This diffusion has been accompanied by fears that such automation could facilitate collusion. A number of recent papers on algorithmic pricing show in simulations that learning algorithms coordinate on less-than-competitive outcomes.\",\"PeriodicalId\":210555,\"journal\":{\"name\":\"Proceedings of the 24th ACM Conference on Economics and Computation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM Conference on Economics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3580507.3597726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580507.3597726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

学习算法正在各种商业环境中激增,从在线拍卖中的自动竞标到购物平台的定价和设定租金。伴随这种扩散而来的是对这种自动化可能助长共谋的担忧。最近一些关于算法定价的论文在模拟中表明,学习算法在竞争程度较低的结果上进行协调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Algorithms and Collusion via Coupling
Learning algorithms are proliferating in a variety of business contexts, ranging from automated bidding in online auctions to pricing on shopping platforms and setting rents. This diffusion has been accompanied by fears that such automation could facilitate collusion. A number of recent papers on algorithmic pricing show in simulations that learning algorithms coordinate on less-than-competitive outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信