自动角色生成(APG):基本原理和演示

Soon-Gyo Jung, Joni O. Salminen, Haewoon Kwak, Jisun An, B. Jansen
{"title":"自动角色生成(APG):基本原理和演示","authors":"Soon-Gyo Jung, Joni O. Salminen, Haewoon Kwak, Jisun An, B. Jansen","doi":"10.1145/3176349.3176893","DOIUrl":null,"url":null,"abstract":"We present Automatic Persona Generation (APG), a methodology and system for quantitative persona generation using large amounts of online social media data. The system is operational, beta deployed with several client organizations in multiple industry verticals and ranging from small-to-medium sized enterprises to large multi-national corporations. Using a robust web framework and stable back-end database, APG is currently processing tens of millions of user interactions with thousands of online digital products on multiple social media platforms, such as Facebook and YouTube. APG identifies both distinct and impactful user segments and then creates persona descriptions by automatically adding pertinent features, such as names, photos, and personal attributes. We present the overall methodological approach, architecture development, and main system features. APG has a potential value for organizations distributing content via online platforms and is unique in its approach to persona generation. APG can be found online at https://persona.qcri.org.","PeriodicalId":198379,"journal":{"name":"Proceedings of the 2018 Conference on Human Information Interaction & Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Automatic Persona Generation (APG): A Rationale and Demonstration\",\"authors\":\"Soon-Gyo Jung, Joni O. Salminen, Haewoon Kwak, Jisun An, B. Jansen\",\"doi\":\"10.1145/3176349.3176893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Automatic Persona Generation (APG), a methodology and system for quantitative persona generation using large amounts of online social media data. The system is operational, beta deployed with several client organizations in multiple industry verticals and ranging from small-to-medium sized enterprises to large multi-national corporations. Using a robust web framework and stable back-end database, APG is currently processing tens of millions of user interactions with thousands of online digital products on multiple social media platforms, such as Facebook and YouTube. APG identifies both distinct and impactful user segments and then creates persona descriptions by automatically adding pertinent features, such as names, photos, and personal attributes. We present the overall methodological approach, architecture development, and main system features. APG has a potential value for organizations distributing content via online platforms and is unique in its approach to persona generation. APG can be found online at https://persona.qcri.org.\",\"PeriodicalId\":198379,\"journal\":{\"name\":\"Proceedings of the 2018 Conference on Human Information Interaction & Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 Conference on Human Information Interaction & Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3176349.3176893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 Conference on Human Information Interaction & Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3176349.3176893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

我们提出了自动角色生成(APG),这是一种使用大量在线社交媒体数据进行定量角色生成的方法和系统。该系统是可操作的,在多个垂直行业的几个客户组织中进行了测试,范围从中小型企业到大型跨国公司。使用强大的web框架和稳定的后端数据库,APG目前正在处理数千万用户与Facebook和YouTube等多个社交媒体平台上数千种在线数字产品的互动。APG识别不同且有影响力的用户细分,然后通过自动添加相关功能(如姓名、照片和个人属性)创建角色描述。我们介绍了整体的方法方法、架构开发和主要的系统特性。APG对于通过在线平台分发内容的组织具有潜在价值,并且在角色生成方法上是独一无二的。APG可以在https://persona.qcri.org网站上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Persona Generation (APG): A Rationale and Demonstration
We present Automatic Persona Generation (APG), a methodology and system for quantitative persona generation using large amounts of online social media data. The system is operational, beta deployed with several client organizations in multiple industry verticals and ranging from small-to-medium sized enterprises to large multi-national corporations. Using a robust web framework and stable back-end database, APG is currently processing tens of millions of user interactions with thousands of online digital products on multiple social media platforms, such as Facebook and YouTube. APG identifies both distinct and impactful user segments and then creates persona descriptions by automatically adding pertinent features, such as names, photos, and personal attributes. We present the overall methodological approach, architecture development, and main system features. APG has a potential value for organizations distributing content via online platforms and is unique in its approach to persona generation. APG can be found online at https://persona.qcri.org.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信