Junichiro Hayata, Fuyuki Kitagawa, Yusuke Sakai, Goichiro Hanaoka, Kanta Matsuura
{"title":"针对可重复CCA的非延展性和其他rcca安全概念之间的等价性","authors":"Junichiro Hayata, Fuyuki Kitagawa, Yusuke Sakai, Goichiro Hanaoka, Kanta Matsuura","doi":"10.1587/transfun.2020cip0015","DOIUrl":null,"url":null,"abstract":"Replayable chosen ciphertext (RCCA) security was introduced by Canetti, Krawczyk, and Nielsen (CRYPTO 03) in order to handle an encryption scheme that is “non-malleable except tampering which preserves the plaintext”. RCCA security is a relaxation of CCA security and a useful security notion for many practical applications such as authentication and key exchange. Canetti et al. defined non-malleability against RCCA (NM-RCCA), indistinguishability against RCCA (IND-RCCA), and universal composability against RCCA (UC-RCCA). Moreover, they proved that these three security notions are equivalent when considering a PKE scheme whose plaintext space is super-polynomially large. Among these three security notions, NM-RCCA seems to play the central role since RCCA security was introduced in order to capture “non-malleability except tampering which preserves the plaintext.” However, their definition of NM-RCCA is not a natural extension of that of classical non-malleability, and it is not clear whether their NM-RCCA captures the requirement of classical non-malleability. In this paper, we propose definitions of indistinguishability-based and simulation-based non-malleability against RCCA by extending definitions of classical non-malleability. We then prove that these two notions of non-malleability and IND-RCCA are equivalent regardless of the size of plaintext space of PKE schemes.","PeriodicalId":348826,"journal":{"name":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalence between Non-Malleability against Replayable CCA and Other RCCA-Security Notions\",\"authors\":\"Junichiro Hayata, Fuyuki Kitagawa, Yusuke Sakai, Goichiro Hanaoka, Kanta Matsuura\",\"doi\":\"10.1587/transfun.2020cip0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Replayable chosen ciphertext (RCCA) security was introduced by Canetti, Krawczyk, and Nielsen (CRYPTO 03) in order to handle an encryption scheme that is “non-malleable except tampering which preserves the plaintext”. RCCA security is a relaxation of CCA security and a useful security notion for many practical applications such as authentication and key exchange. Canetti et al. defined non-malleability against RCCA (NM-RCCA), indistinguishability against RCCA (IND-RCCA), and universal composability against RCCA (UC-RCCA). Moreover, they proved that these three security notions are equivalent when considering a PKE scheme whose plaintext space is super-polynomially large. Among these three security notions, NM-RCCA seems to play the central role since RCCA security was introduced in order to capture “non-malleability except tampering which preserves the plaintext.” However, their definition of NM-RCCA is not a natural extension of that of classical non-malleability, and it is not clear whether their NM-RCCA captures the requirement of classical non-malleability. In this paper, we propose definitions of indistinguishability-based and simulation-based non-malleability against RCCA by extending definitions of classical non-malleability. We then prove that these two notions of non-malleability and IND-RCCA are equivalent regardless of the size of plaintext space of PKE schemes.\",\"PeriodicalId\":348826,\"journal\":{\"name\":\"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transfun.2020cip0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2020cip0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Equivalence between Non-Malleability against Replayable CCA and Other RCCA-Security Notions
Replayable chosen ciphertext (RCCA) security was introduced by Canetti, Krawczyk, and Nielsen (CRYPTO 03) in order to handle an encryption scheme that is “non-malleable except tampering which preserves the plaintext”. RCCA security is a relaxation of CCA security and a useful security notion for many practical applications such as authentication and key exchange. Canetti et al. defined non-malleability against RCCA (NM-RCCA), indistinguishability against RCCA (IND-RCCA), and universal composability against RCCA (UC-RCCA). Moreover, they proved that these three security notions are equivalent when considering a PKE scheme whose plaintext space is super-polynomially large. Among these three security notions, NM-RCCA seems to play the central role since RCCA security was introduced in order to capture “non-malleability except tampering which preserves the plaintext.” However, their definition of NM-RCCA is not a natural extension of that of classical non-malleability, and it is not clear whether their NM-RCCA captures the requirement of classical non-malleability. In this paper, we propose definitions of indistinguishability-based and simulation-based non-malleability against RCCA by extending definitions of classical non-malleability. We then prove that these two notions of non-malleability and IND-RCCA are equivalent regardless of the size of plaintext space of PKE schemes.