基于瞬态液相焊接的高温互连可靠性问题

R. Dudek, P. Sommer, A. Fix, S. Rzepka, B. Michel
{"title":"基于瞬态液相焊接的高温互连可靠性问题","authors":"R. Dudek, P. Sommer, A. Fix, S. Rzepka, B. Michel","doi":"10.1109/EUROSIME.2013.6529908","DOIUrl":null,"url":null,"abstract":"New high temperature interconnection technologies emerge because of the need for electronics use at temperatures beyond 150°C. Transient liquid phase (TLP) soldering is one option with the advantage of processing conditions being close to those for conventional soldering. In the Cu-Sn system addressed in the paper, a high post-processed melting point of the solder interconnects is achieved due to the formation of Cu6Sn5 and Cu3Sn intermetallic compounds (IMC). A specific low melting solder paste under development can be used if applications for both power and logic electronics are addressed. To accelerate the development of IMCs in thicker solder layers, metallic particles are embedded in the solder paste. New challenges concerning the thermo-mechanical reliability of these devices arise as the material properties of the IMC interconnect differ substantially from those known for soft solders. Based on material characterization of pure IMC effective material characteristics of the TLP joint, consisting of a mixture of different constituents, have been derived based on a micromechanical model. Due to the change in material stiffness and strongly decreasing ductility of the joining material, the potential failure modes of an assembly made by TLP soldering change. The new thermo- mechanical failure risks are evaluated for a power module, an IGBT on DCB substrate, by both conventional FEA and cohesive zone modelling.","PeriodicalId":270532,"journal":{"name":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"333 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Reliability issues for high temperature interconnections based on transient liquid phase soldering\",\"authors\":\"R. Dudek, P. Sommer, A. Fix, S. Rzepka, B. Michel\",\"doi\":\"10.1109/EUROSIME.2013.6529908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New high temperature interconnection technologies emerge because of the need for electronics use at temperatures beyond 150°C. Transient liquid phase (TLP) soldering is one option with the advantage of processing conditions being close to those for conventional soldering. In the Cu-Sn system addressed in the paper, a high post-processed melting point of the solder interconnects is achieved due to the formation of Cu6Sn5 and Cu3Sn intermetallic compounds (IMC). A specific low melting solder paste under development can be used if applications for both power and logic electronics are addressed. To accelerate the development of IMCs in thicker solder layers, metallic particles are embedded in the solder paste. New challenges concerning the thermo-mechanical reliability of these devices arise as the material properties of the IMC interconnect differ substantially from those known for soft solders. Based on material characterization of pure IMC effective material characteristics of the TLP joint, consisting of a mixture of different constituents, have been derived based on a micromechanical model. Due to the change in material stiffness and strongly decreasing ductility of the joining material, the potential failure modes of an assembly made by TLP soldering change. The new thermo- mechanical failure risks are evaluated for a power module, an IGBT on DCB substrate, by both conventional FEA and cohesive zone modelling.\",\"PeriodicalId\":270532,\"journal\":{\"name\":\"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"333 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2013.6529908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2013.6529908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

由于需要在150°C以上的温度下使用电子产品,新的高温互连技术应运而生。瞬态液相(TLP)焊接是一种选择,其优点是加工条件接近传统焊接。在本文所述的Cu-Sn体系中,由于Cu6Sn5和Cu3Sn金属间化合物(IMC)的形成,焊料互连的后处理熔点很高。一种特殊的低熔点锡膏正在开发中,可以用于电力和逻辑电子的应用。为了在较厚的焊料层中加速imc的发展,金属颗粒被嵌入到锡膏中。由于IMC互连的材料特性与软焊料的材料特性存在很大差异,因此出现了有关这些器件的热机械可靠性的新挑战。在纯IMC材料表征的基础上,基于微观力学模型推导了由不同成分混合组成的TLP接头的有效材料特性。由于材料刚度的变化和连接材料延展性的强烈下降,TLP焊接组件的潜在失效模式发生了变化。采用传统有限元分析和内聚区建模方法,对DCB基板上的IGBT电源模块进行了新型热机械失效风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability issues for high temperature interconnections based on transient liquid phase soldering
New high temperature interconnection technologies emerge because of the need for electronics use at temperatures beyond 150°C. Transient liquid phase (TLP) soldering is one option with the advantage of processing conditions being close to those for conventional soldering. In the Cu-Sn system addressed in the paper, a high post-processed melting point of the solder interconnects is achieved due to the formation of Cu6Sn5 and Cu3Sn intermetallic compounds (IMC). A specific low melting solder paste under development can be used if applications for both power and logic electronics are addressed. To accelerate the development of IMCs in thicker solder layers, metallic particles are embedded in the solder paste. New challenges concerning the thermo-mechanical reliability of these devices arise as the material properties of the IMC interconnect differ substantially from those known for soft solders. Based on material characterization of pure IMC effective material characteristics of the TLP joint, consisting of a mixture of different constituents, have been derived based on a micromechanical model. Due to the change in material stiffness and strongly decreasing ductility of the joining material, the potential failure modes of an assembly made by TLP soldering change. The new thermo- mechanical failure risks are evaluated for a power module, an IGBT on DCB substrate, by both conventional FEA and cohesive zone modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信