求解电磁基准问题的多目标QPSO算法

Cristina Mamoc, A. Duca, G. Ciuprina, A. Lup
{"title":"求解电磁基准问题的多目标QPSO算法","authors":"Cristina Mamoc, A. Duca, G. Ciuprina, A. Lup","doi":"10.1109/ISFEE51261.2020.9756185","DOIUrl":null,"url":null,"abstract":"The paper proposes a new set of Quantum-behaved Particle Swarm Optimization (QPSO) multi-objective algorithms with the final goal to use them for the optimization of a two objective electromagnetic benchmark inspired by a real world application. Starting from some various flavors of single-objective QPSO algorithms, known as: classic, with Gaussian attractor and with random mean, the new multi-objective QPSO implementations integrate principles inspired from notorious algorithms such as NSGA II, OMOPSO and ε-MOEA. The proposed algorithms are tested on benchmark problems proposed by scientific communities working in Evolutionary Computation and Computational Electromagnetics.","PeriodicalId":145923,"journal":{"name":"2020 International Symposium on Fundamentals of Electrical Engineering (ISFEE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Objective QPSO Algorithms to Solve an Electromagnetic Benchmark Problem\",\"authors\":\"Cristina Mamoc, A. Duca, G. Ciuprina, A. Lup\",\"doi\":\"10.1109/ISFEE51261.2020.9756185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a new set of Quantum-behaved Particle Swarm Optimization (QPSO) multi-objective algorithms with the final goal to use them for the optimization of a two objective electromagnetic benchmark inspired by a real world application. Starting from some various flavors of single-objective QPSO algorithms, known as: classic, with Gaussian attractor and with random mean, the new multi-objective QPSO implementations integrate principles inspired from notorious algorithms such as NSGA II, OMOPSO and ε-MOEA. The proposed algorithms are tested on benchmark problems proposed by scientific communities working in Evolutionary Computation and Computational Electromagnetics.\",\"PeriodicalId\":145923,\"journal\":{\"name\":\"2020 International Symposium on Fundamentals of Electrical Engineering (ISFEE)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Fundamentals of Electrical Engineering (ISFEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISFEE51261.2020.9756185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Fundamentals of Electrical Engineering (ISFEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISFEE51261.2020.9756185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一套新的量子粒子群优化(QPSO)多目标算法,其最终目标是利用这些算法对一个实际应用中的双目标电磁基准进行优化。从经典、高斯吸引子和随机均值的单目标QPSO算法出发,新的多目标QPSO实现融合了NSGA II、OMOPSO和ε-MOEA等著名算法的原理。提出的算法在进化计算和计算电磁学领域的科学界提出的基准问题上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Objective QPSO Algorithms to Solve an Electromagnetic Benchmark Problem
The paper proposes a new set of Quantum-behaved Particle Swarm Optimization (QPSO) multi-objective algorithms with the final goal to use them for the optimization of a two objective electromagnetic benchmark inspired by a real world application. Starting from some various flavors of single-objective QPSO algorithms, known as: classic, with Gaussian attractor and with random mean, the new multi-objective QPSO implementations integrate principles inspired from notorious algorithms such as NSGA II, OMOPSO and ε-MOEA. The proposed algorithms are tested on benchmark problems proposed by scientific communities working in Evolutionary Computation and Computational Electromagnetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信