超参数对反向传播的影响

Aaditree Jaisswal, Anjali Naik
{"title":"超参数对反向传播的影响","authors":"Aaditree Jaisswal, Anjali Naik","doi":"10.1109/punecon52575.2021.9686489","DOIUrl":null,"url":null,"abstract":"In machine learning algorithms, parameters and hy-perparameters are important properties in the training process. Parameters are modified through machine learning algorithms while hyperparameters are the parameters that are adjusted manually to achieve the desired accuracy and increase efficiency. In neural networks, weights are parameters while hyper-parameters include layer size, momentum, learning rate, acti-vation function family, weight initialization and normalization scheme for input data. Multi-layer feed-forward Backpropagation neural network (BPN) has been used to solve a variety of classification problems as it can map “any” input-output mapping and classify linearly inseparable data. The research work presented in this paper gives a detailed description of BPN and explains various hyper-mutates for BPN. The paper describes the implementation of BPN, experimentation and analysis with hyperparameters like weight initialization and learning.","PeriodicalId":154406,"journal":{"name":"2021 IEEE Pune Section International Conference (PuneCon)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Hyperparameters on Backpropagation\",\"authors\":\"Aaditree Jaisswal, Anjali Naik\",\"doi\":\"10.1109/punecon52575.2021.9686489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In machine learning algorithms, parameters and hy-perparameters are important properties in the training process. Parameters are modified through machine learning algorithms while hyperparameters are the parameters that are adjusted manually to achieve the desired accuracy and increase efficiency. In neural networks, weights are parameters while hyper-parameters include layer size, momentum, learning rate, acti-vation function family, weight initialization and normalization scheme for input data. Multi-layer feed-forward Backpropagation neural network (BPN) has been used to solve a variety of classification problems as it can map “any” input-output mapping and classify linearly inseparable data. The research work presented in this paper gives a detailed description of BPN and explains various hyper-mutates for BPN. The paper describes the implementation of BPN, experimentation and analysis with hyperparameters like weight initialization and learning.\",\"PeriodicalId\":154406,\"journal\":{\"name\":\"2021 IEEE Pune Section International Conference (PuneCon)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Pune Section International Conference (PuneCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/punecon52575.2021.9686489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Pune Section International Conference (PuneCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/punecon52575.2021.9686489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在机器学习算法中,参数和超参数是训练过程中的重要属性。参数是通过机器学习算法修改的,而超参数是手动调整的参数,以达到所需的精度和提高效率。在神经网络中,权重是参数,而超参数包括层大小、动量、学习率、激活函数族、权重初始化和输入数据的归一化方案。多层前馈反向传播神经网络(BPN)可以映射“任意”输入-输出映射,并对线性不可分割的数据进行分类,已被用于解决各种分类问题。本文的研究工作给出了BPN的详细描述,并解释了BPN的各种超突变。本文描述了BPN的实现,以及使用权值初始化和学习等超参数进行的实验和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Hyperparameters on Backpropagation
In machine learning algorithms, parameters and hy-perparameters are important properties in the training process. Parameters are modified through machine learning algorithms while hyperparameters are the parameters that are adjusted manually to achieve the desired accuracy and increase efficiency. In neural networks, weights are parameters while hyper-parameters include layer size, momentum, learning rate, acti-vation function family, weight initialization and normalization scheme for input data. Multi-layer feed-forward Backpropagation neural network (BPN) has been used to solve a variety of classification problems as it can map “any” input-output mapping and classify linearly inseparable data. The research work presented in this paper gives a detailed description of BPN and explains various hyper-mutates for BPN. The paper describes the implementation of BPN, experimentation and analysis with hyperparameters like weight initialization and learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信