M. Nogueira, Michael Amissah, Siddra Maryam, Noel Lynch, S. Killeen, Micháel O'Riordain, S. Andersson-Engels
{"title":"基于支持向量机和漫反射光谱的结直肠癌组织分类优化","authors":"M. Nogueira, Michael Amissah, Siddra Maryam, Noel Lynch, S. Killeen, Micháel O'Riordain, S. Andersson-Engels","doi":"10.1117/12.2615033","DOIUrl":null,"url":null,"abstract":"Optimizing support vector machine models for colorectal cancer detection using diffuse reflectance spectroscopy at extended wavelength ranges and tissue layers up to 2mm deep achieved 96.1% sensitivity and 95.7% specificity on tissue classification.","PeriodicalId":117188,"journal":{"name":"Translational Biophotonics: Diagnostics and Therapeutics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimization of tissue classification for colorectal cancer detection using support vector machines and diffuse reflectance spectroscopy\",\"authors\":\"M. Nogueira, Michael Amissah, Siddra Maryam, Noel Lynch, S. Killeen, Micháel O'Riordain, S. Andersson-Engels\",\"doi\":\"10.1117/12.2615033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing support vector machine models for colorectal cancer detection using diffuse reflectance spectroscopy at extended wavelength ranges and tissue layers up to 2mm deep achieved 96.1% sensitivity and 95.7% specificity on tissue classification.\",\"PeriodicalId\":117188,\"journal\":{\"name\":\"Translational Biophotonics: Diagnostics and Therapeutics\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Biophotonics: Diagnostics and Therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2615033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Biophotonics: Diagnostics and Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2615033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of tissue classification for colorectal cancer detection using support vector machines and diffuse reflectance spectroscopy
Optimizing support vector machine models for colorectal cancer detection using diffuse reflectance spectroscopy at extended wavelength ranges and tissue layers up to 2mm deep achieved 96.1% sensitivity and 95.7% specificity on tissue classification.