基于磁场的球窝关节姿态估计

Tai Hoang, Alona Kharchenko, Simon Trendel, Rafael Hostettler
{"title":"基于磁场的球窝关节姿态估计","authors":"Tai Hoang, Alona Kharchenko, Simon Trendel, Rafael Hostettler","doi":"10.48550/arXiv.2210.03984","DOIUrl":null,"url":null,"abstract":"Roboy 3.0 is an open-source tendon-driven humanoid robot that mimics the musculoskeletal system of the human body. Roboy 3.0 is being developed as a remote robotic body - or a robotic avatar - for humans to achieve remote physical presence. Artificial muscles and tendons allow it to closely resemble human morphology with 3-DoF neck, shoulders and wrists. Roboy 3.0 3-DoF joints are implemented as ball-and-socket joints. While industry provides a clear solution for 1-DoF joint pose sensing, it is not the case for the ball-and-socket joint type. In this paper we present a custom solution to estimate the pose of a ball-and-socket joint. We embed an array of magnets into the ball and an array of 3D magnetic sensors into the socket. We then, based on the changes in the magnetic field as the joint rotates, are able to estimate the orientation of the joint. We evaluate the performance of two neural network approaches using the LSTM and Bayesian-filter like DVBF. Results show that in order to achieve the same mean square error (MSE) DVBFs require significantly more time training and hyperparameter tuning compared to LSTMs, while DVBF cope with sensor noise better. Both methods are capable of real-time joint pose estimation at 37 Hz with MSE of around 0.03 rad for all three degrees of freedom combined. The LSTM model is deployed and used for joint pose estimation of Roboy 3.0's shoulder and neck joints. The software implementation and PCB designs are open-sourced under https://github.com/Roboy/ball_and_socket_estimator","PeriodicalId":136210,"journal":{"name":"International Symposium of Robotics Research","volume":"19 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ball-and-socket joint pose estimation using magnetic field\",\"authors\":\"Tai Hoang, Alona Kharchenko, Simon Trendel, Rafael Hostettler\",\"doi\":\"10.48550/arXiv.2210.03984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Roboy 3.0 is an open-source tendon-driven humanoid robot that mimics the musculoskeletal system of the human body. Roboy 3.0 is being developed as a remote robotic body - or a robotic avatar - for humans to achieve remote physical presence. Artificial muscles and tendons allow it to closely resemble human morphology with 3-DoF neck, shoulders and wrists. Roboy 3.0 3-DoF joints are implemented as ball-and-socket joints. While industry provides a clear solution for 1-DoF joint pose sensing, it is not the case for the ball-and-socket joint type. In this paper we present a custom solution to estimate the pose of a ball-and-socket joint. We embed an array of magnets into the ball and an array of 3D magnetic sensors into the socket. We then, based on the changes in the magnetic field as the joint rotates, are able to estimate the orientation of the joint. We evaluate the performance of two neural network approaches using the LSTM and Bayesian-filter like DVBF. Results show that in order to achieve the same mean square error (MSE) DVBFs require significantly more time training and hyperparameter tuning compared to LSTMs, while DVBF cope with sensor noise better. Both methods are capable of real-time joint pose estimation at 37 Hz with MSE of around 0.03 rad for all three degrees of freedom combined. The LSTM model is deployed and used for joint pose estimation of Roboy 3.0's shoulder and neck joints. The software implementation and PCB designs are open-sourced under https://github.com/Roboy/ball_and_socket_estimator\",\"PeriodicalId\":136210,\"journal\":{\"name\":\"International Symposium of Robotics Research\",\"volume\":\"19 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium of Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.03984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.03984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Roboy 3.0是一个开源的肌腱驱动人形机器人,模仿人体的肌肉骨骼系统。Roboy 3.0是作为一个远程机器人身体或机器人化身开发的,供人类实现远程物理存在。人造肌肉和肌腱使它的形态与人类非常相似,有3自由度的颈部、肩部和手腕。Roboy 3.0 3-DoF关节实现为球窝关节。虽然业界为1-DoF关节姿态传感提供了明确的解决方案,但对于球窝式关节类型来说,情况并非如此。本文提出了一种估算球窝关节位姿的自定义解。我们将一组磁铁嵌入球中,并将一组3D磁传感器嵌入球槽中。然后,根据关节旋转时磁场的变化,我们能够估计关节的方向。我们使用LSTM和贝叶斯滤波器(如DVBF)来评估两种神经网络方法的性能。结果表明,为了获得相同的均方误差(MSE), DVBF比lstm需要更多的训练时间和超参数调整时间,而DVBF能更好地处理传感器噪声。这两种方法都能够在37 Hz的频率下实时估计关节姿态,所有三个自由度组合的MSE约为0.03 rad。采用LSTM模型对Roboy 3.0肩颈关节进行关节姿态估计。软件实现和PCB设计在https://github.com/Roboy/ball_and_socket_estimator上开源
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ball-and-socket joint pose estimation using magnetic field
Roboy 3.0 is an open-source tendon-driven humanoid robot that mimics the musculoskeletal system of the human body. Roboy 3.0 is being developed as a remote robotic body - or a robotic avatar - for humans to achieve remote physical presence. Artificial muscles and tendons allow it to closely resemble human morphology with 3-DoF neck, shoulders and wrists. Roboy 3.0 3-DoF joints are implemented as ball-and-socket joints. While industry provides a clear solution for 1-DoF joint pose sensing, it is not the case for the ball-and-socket joint type. In this paper we present a custom solution to estimate the pose of a ball-and-socket joint. We embed an array of magnets into the ball and an array of 3D magnetic sensors into the socket. We then, based on the changes in the magnetic field as the joint rotates, are able to estimate the orientation of the joint. We evaluate the performance of two neural network approaches using the LSTM and Bayesian-filter like DVBF. Results show that in order to achieve the same mean square error (MSE) DVBFs require significantly more time training and hyperparameter tuning compared to LSTMs, while DVBF cope with sensor noise better. Both methods are capable of real-time joint pose estimation at 37 Hz with MSE of around 0.03 rad for all three degrees of freedom combined. The LSTM model is deployed and used for joint pose estimation of Roboy 3.0's shoulder and neck joints. The software implementation and PCB designs are open-sourced under https://github.com/Roboy/ball_and_socket_estimator
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信