滑模神经控制及其应用

A. Poznyak, I. Chairez, T. Poznyak
{"title":"滑模神经控制及其应用","authors":"A. Poznyak, I. Chairez, T. Poznyak","doi":"10.1109/VSS.2006.1644484","DOIUrl":null,"url":null,"abstract":"In this study the tracking problem for a class of nonlinear uncertain systems is tackled. A new sliding mode neurocontroller is suggested to solve this problem. The designing of this controller includes the construction of online state estimates and the corresponding tracking control based on sliding mode approach using obtained state estimates. We apply a special sliding mode technique during the \"offline training\" to estimate the right-hand side of the given dynamics in finite-time and then to use these estimates for the best (in LQ-sense) nominal weights selection in the designed neuro observer. A switching (sign) type term is incorporated in to the observer structure to correct the current state estimates using only available and on-line measurable output data supplied with a new learning procedure with a relay term. The illustrative example dealing with a real water ozonation process is presented","PeriodicalId":146618,"journal":{"name":"International Workshop on Variable Structure Systems, 2006. VSS'06.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Sliding Mode Neurocontrol with Applications\",\"authors\":\"A. Poznyak, I. Chairez, T. Poznyak\",\"doi\":\"10.1109/VSS.2006.1644484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study the tracking problem for a class of nonlinear uncertain systems is tackled. A new sliding mode neurocontroller is suggested to solve this problem. The designing of this controller includes the construction of online state estimates and the corresponding tracking control based on sliding mode approach using obtained state estimates. We apply a special sliding mode technique during the \\\"offline training\\\" to estimate the right-hand side of the given dynamics in finite-time and then to use these estimates for the best (in LQ-sense) nominal weights selection in the designed neuro observer. A switching (sign) type term is incorporated in to the observer structure to correct the current state estimates using only available and on-line measurable output data supplied with a new learning procedure with a relay term. The illustrative example dealing with a real water ozonation process is presented\",\"PeriodicalId\":146618,\"journal\":{\"name\":\"International Workshop on Variable Structure Systems, 2006. VSS'06.\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Variable Structure Systems, 2006. VSS'06.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSS.2006.1644484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Variable Structure Systems, 2006. VSS'06.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2006.1644484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了一类非线性不确定系统的跟踪问题。提出了一种新的滑模神经控制器来解决这一问题。该控制器的设计包括构造在线状态估计和基于滑模方法的跟踪控制。我们在“离线训练”期间应用了一种特殊的滑模技术来在有限时间内估计给定动态的右侧,然后在设计的神经观测器中使用这些估计进行最佳(在lq意义上)标称权选择。在观测器结构中加入了一个开关(符号)类型的项,仅使用可用的和在线可测量的输出数据来纠正当前状态估计,这些数据由带有继电器项的新学习过程提供。给出了一个实际水臭氧化过程的实例
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sliding Mode Neurocontrol with Applications
In this study the tracking problem for a class of nonlinear uncertain systems is tackled. A new sliding mode neurocontroller is suggested to solve this problem. The designing of this controller includes the construction of online state estimates and the corresponding tracking control based on sliding mode approach using obtained state estimates. We apply a special sliding mode technique during the "offline training" to estimate the right-hand side of the given dynamics in finite-time and then to use these estimates for the best (in LQ-sense) nominal weights selection in the designed neuro observer. A switching (sign) type term is incorporated in to the observer structure to correct the current state estimates using only available and on-line measurable output data supplied with a new learning procedure with a relay term. The illustrative example dealing with a real water ozonation process is presented
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信