被动踝关节两足和全人形机器人动平衡控制方案及不确定性考虑

Donghyun Kim, Steven Jens Jorgensen, Hochul Hwang, L. Sentis
{"title":"被动踝关节两足和全人形机器人动平衡控制方案及不确定性考虑","authors":"Donghyun Kim, Steven Jens Jorgensen, Hochul Hwang, L. Sentis","doi":"10.1109/HUMANOIDS.2018.8624915","DOIUrl":null,"url":null,"abstract":"We propose a methodology for dynamically balancing passive-ankled bipeds and full humanoids. As dynamic locomotion without ankle-actuation is more difficult than with actuated feet, our control scheme adopts an efficient whole-body controller that combines inverse kinematics, contact-consistent feed-forward torques, and low-level motor position controllers. To understand real-world sensing and controller requirements, we perform an uncertainty analysis on the linear-inverted-pendulum (LIP)-based footstep planner. This enables us to identify necessary hardware and control refinements to demonstrate that our controller can achieve long-term unsupported dynamic balancing on our series-elastic biped, Mercury. Through simulations, we also demonstrate that our control scheme for dynamic balancing with passive-ankles is applicable to full humanoid robots.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Control Scheme and Uncertainty Considerations for Dynamic Balancing of Passive-Ankled Bipeds and Full Humanoids\",\"authors\":\"Donghyun Kim, Steven Jens Jorgensen, Hochul Hwang, L. Sentis\",\"doi\":\"10.1109/HUMANOIDS.2018.8624915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a methodology for dynamically balancing passive-ankled bipeds and full humanoids. As dynamic locomotion without ankle-actuation is more difficult than with actuated feet, our control scheme adopts an efficient whole-body controller that combines inverse kinematics, contact-consistent feed-forward torques, and low-level motor position controllers. To understand real-world sensing and controller requirements, we perform an uncertainty analysis on the linear-inverted-pendulum (LIP)-based footstep planner. This enables us to identify necessary hardware and control refinements to demonstrate that our controller can achieve long-term unsupported dynamic balancing on our series-elastic biped, Mercury. Through simulations, we also demonstrate that our control scheme for dynamic balancing with passive-ankles is applicable to full humanoid robots.\",\"PeriodicalId\":433345,\"journal\":{\"name\":\"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2018.8624915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8624915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种动态平衡被动踝关节两足动物和完全人形动物的方法。由于没有踝关节驱动的动态运动比有足部驱动的动态运动更困难,我们的控制方案采用了一种高效的全身控制器,该控制器结合了逆运动学、接触一致的前馈力矩和低级电机位置控制器。为了了解真实世界的传感和控制器需求,我们对基于线性倒立摆(LIP)的脚步规划器进行了不确定性分析。这使我们能够识别必要的硬件和控制改进,以证明我们的控制器可以在我们的系列弹性双足机器人Mercury上实现长期无支持的动态平衡。仿真结果表明,该被动踝关节动平衡控制方案适用于全人形机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control Scheme and Uncertainty Considerations for Dynamic Balancing of Passive-Ankled Bipeds and Full Humanoids
We propose a methodology for dynamically balancing passive-ankled bipeds and full humanoids. As dynamic locomotion without ankle-actuation is more difficult than with actuated feet, our control scheme adopts an efficient whole-body controller that combines inverse kinematics, contact-consistent feed-forward torques, and low-level motor position controllers. To understand real-world sensing and controller requirements, we perform an uncertainty analysis on the linear-inverted-pendulum (LIP)-based footstep planner. This enables us to identify necessary hardware and control refinements to demonstrate that our controller can achieve long-term unsupported dynamic balancing on our series-elastic biped, Mercury. Through simulations, we also demonstrate that our control scheme for dynamic balancing with passive-ankles is applicable to full humanoid robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信