{"title":"飞秒激光脉冲的多光子电离","authors":"H. Muller","doi":"10.1364/swcr.1988.hilim265","DOIUrl":null,"url":null,"abstract":"There are a number of reasons to use subpicosecond pulses in multiphoton ionization experiments. Pulses with shorter risetimes make it possible to study processes with higher rates before one runs into the problem of depletion of target atoms. Furthermore the momentum of the electron does not change between the point of ionization and the detector if the pulse expires before the electron has time to sample the spatial inhomogeneity of the light intensity. This makes it possible to identify the intensity at which an electron was formed from the energy with which it reaches the detector.","PeriodicalId":190758,"journal":{"name":"Short Wavelength Coherent Radiation: Generation and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiphoton Ionization with Femtosecond Laser Pulses\",\"authors\":\"H. Muller\",\"doi\":\"10.1364/swcr.1988.hilim265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are a number of reasons to use subpicosecond pulses in multiphoton ionization experiments. Pulses with shorter risetimes make it possible to study processes with higher rates before one runs into the problem of depletion of target atoms. Furthermore the momentum of the electron does not change between the point of ionization and the detector if the pulse expires before the electron has time to sample the spatial inhomogeneity of the light intensity. This makes it possible to identify the intensity at which an electron was formed from the energy with which it reaches the detector.\",\"PeriodicalId\":190758,\"journal\":{\"name\":\"Short Wavelength Coherent Radiation: Generation and Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Short Wavelength Coherent Radiation: Generation and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/swcr.1988.hilim265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Short Wavelength Coherent Radiation: Generation and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/swcr.1988.hilim265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiphoton Ionization with Femtosecond Laser Pulses
There are a number of reasons to use subpicosecond pulses in multiphoton ionization experiments. Pulses with shorter risetimes make it possible to study processes with higher rates before one runs into the problem of depletion of target atoms. Furthermore the momentum of the electron does not change between the point of ionization and the detector if the pulse expires before the electron has time to sample the spatial inhomogeneity of the light intensity. This makes it possible to identify the intensity at which an electron was formed from the energy with which it reaches the detector.