基于压缩感知的多模态医学图像融合

Xingbin Liu, Huiqian Du, Jiadi Bei, Wenbo Mei
{"title":"基于压缩感知的多模态医学图像融合","authors":"Xingbin Liu, Huiqian Du, Jiadi Bei, Wenbo Mei","doi":"10.1109/BMEI.2015.7401478","DOIUrl":null,"url":null,"abstract":"In this paper, a novel multi-modality medical image fusion method based on compressed sensing by fusing undersampled k-space data is proposed. In order to transfer structural information from the source images into the fused image clearly, a combined fusion strategy is designed for undersampled low and high frequency subbands of k-space data. The final fused image is reconstructed from fused subband data with the conjugate gradient method. The experimental results demonstrate that the proposed algorithm can substantially reduce sampling data and obtain satisfactory results to meet the demand of clinical diagnosis.","PeriodicalId":119361,"journal":{"name":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Compressed sensing based multi-modal medical image fusion using a combined fusion strategy\",\"authors\":\"Xingbin Liu, Huiqian Du, Jiadi Bei, Wenbo Mei\",\"doi\":\"10.1109/BMEI.2015.7401478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel multi-modality medical image fusion method based on compressed sensing by fusing undersampled k-space data is proposed. In order to transfer structural information from the source images into the fused image clearly, a combined fusion strategy is designed for undersampled low and high frequency subbands of k-space data. The final fused image is reconstructed from fused subband data with the conjugate gradient method. The experimental results demonstrate that the proposed algorithm can substantially reduce sampling data and obtain satisfactory results to meet the demand of clinical diagnosis.\",\"PeriodicalId\":119361,\"journal\":{\"name\":\"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEI.2015.7401478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2015.7401478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于压缩感知融合欠采样k空间数据的多模态医学图像融合方法。为了将源图像中的结构信息清晰地传递到融合图像中,针对k空间数据的低、高频欠采样子带设计了一种组合融合策略。最后用共轭梯度法对融合后的子带数据进行重构。实验结果表明,该算法能够大幅减少采样数据,获得满意的结果,满足临床诊断的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressed sensing based multi-modal medical image fusion using a combined fusion strategy
In this paper, a novel multi-modality medical image fusion method based on compressed sensing by fusing undersampled k-space data is proposed. In order to transfer structural information from the source images into the fused image clearly, a combined fusion strategy is designed for undersampled low and high frequency subbands of k-space data. The final fused image is reconstructed from fused subband data with the conjugate gradient method. The experimental results demonstrate that the proposed algorithm can substantially reduce sampling data and obtain satisfactory results to meet the demand of clinical diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信