核苷酸序列向量表示的递归神经网络研究

Daniil O. Komarovskikh, Vladislav L. Litvinov, I. A. Kiselev, Artur M. Paniukov, N. I. Trofimov
{"title":"核苷酸序列向量表示的递归神经网络研究","authors":"Daniil O. Komarovskikh, Vladislav L. Litvinov, I. A. Kiselev, Artur M. Paniukov, N. I. Trofimov","doi":"10.1109/SCM50615.2020.9198757","DOIUrl":null,"url":null,"abstract":"Embeddings can be a good way to work with gene sequences, helping to avoid the high computational complexity problems that are often found in multiple sequence alignment. In this paper, we investigate the possibilities of the LSTM network for constructing embeddings of nucleotide sequences. To do this, we trained model on a dataset of 1.5 million pairs of gene sequences belonging to the Escherichia coli species.","PeriodicalId":169458,"journal":{"name":"2020 XXIII International Conference on Soft Computing and Measurements (SCM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of a Recurrent Neural Network for the Vector Representation of Nucleotide Sequences\",\"authors\":\"Daniil O. Komarovskikh, Vladislav L. Litvinov, I. A. Kiselev, Artur M. Paniukov, N. I. Trofimov\",\"doi\":\"10.1109/SCM50615.2020.9198757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embeddings can be a good way to work with gene sequences, helping to avoid the high computational complexity problems that are often found in multiple sequence alignment. In this paper, we investigate the possibilities of the LSTM network for constructing embeddings of nucleotide sequences. To do this, we trained model on a dataset of 1.5 million pairs of gene sequences belonging to the Escherichia coli species.\",\"PeriodicalId\":169458,\"journal\":{\"name\":\"2020 XXIII International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 XXIII International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCM50615.2020.9198757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXIII International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCM50615.2020.9198757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

嵌入是处理基因序列的一种好方法,有助于避免在多序列比对中经常发现的高计算复杂性问题。在本文中,我们研究了LSTM网络用于构建核苷酸序列嵌入的可能性。为了做到这一点,我们在属于大肠杆菌物种的150万对基因序列数据集上训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of a Recurrent Neural Network for the Vector Representation of Nucleotide Sequences
Embeddings can be a good way to work with gene sequences, helping to avoid the high computational complexity problems that are often found in multiple sequence alignment. In this paper, we investigate the possibilities of the LSTM network for constructing embeddings of nucleotide sequences. To do this, we trained model on a dataset of 1.5 million pairs of gene sequences belonging to the Escherichia coli species.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信