N. Anttu, H. Mäntynen, T. Sadi, A. Matikainen, J. Turunen, H. Lipsanen
{"title":"利用FMM、FEM和FDT进行吸收建模","authors":"N. Anttu, H. Mäntynen, T. Sadi, A. Matikainen, J. Turunen, H. Lipsanen","doi":"10.1109/NUSOD.2019.8806882","DOIUrl":null,"url":null,"abstract":"Absorption modeling is at the core of the design process of nanostructured solar cells and photodetectors. We compare the performance of three of the most popular numerical modeling methods: the Fourier modal method (FMM), the finite element method (FEM) and the finite-difference time-domain (FDTD) method. We find that the numerically most efficient method depends on the geometry of the system, as well as on which physical quantities are needed for further analysis. From our study, we will highlight the optimum choice of method for various current nanostructures. With these guidelines, we enable design optimization that would otherwise be impossible with a suboptimal method choice.","PeriodicalId":369769,"journal":{"name":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absorption modeling with FMM, FEM and FDT\",\"authors\":\"N. Anttu, H. Mäntynen, T. Sadi, A. Matikainen, J. Turunen, H. Lipsanen\",\"doi\":\"10.1109/NUSOD.2019.8806882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Absorption modeling is at the core of the design process of nanostructured solar cells and photodetectors. We compare the performance of three of the most popular numerical modeling methods: the Fourier modal method (FMM), the finite element method (FEM) and the finite-difference time-domain (FDTD) method. We find that the numerically most efficient method depends on the geometry of the system, as well as on which physical quantities are needed for further analysis. From our study, we will highlight the optimum choice of method for various current nanostructures. With these guidelines, we enable design optimization that would otherwise be impossible with a suboptimal method choice.\",\"PeriodicalId\":369769,\"journal\":{\"name\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2019.8806882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2019.8806882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Absorption modeling is at the core of the design process of nanostructured solar cells and photodetectors. We compare the performance of three of the most popular numerical modeling methods: the Fourier modal method (FMM), the finite element method (FEM) and the finite-difference time-domain (FDTD) method. We find that the numerically most efficient method depends on the geometry of the system, as well as on which physical quantities are needed for further analysis. From our study, we will highlight the optimum choice of method for various current nanostructures. With these guidelines, we enable design optimization that would otherwise be impossible with a suboptimal method choice.