正在进行的工作:信息物理系统中混合动态时序行为的形式化分析

Li Huang, E. Kang
{"title":"正在进行的工作:信息物理系统中混合动态时序行为的形式化分析","authors":"Li Huang, E. Kang","doi":"10.1109/RTSS46320.2019.00069","DOIUrl":null,"url":null,"abstract":"Ensuring correctness of timed behaviors in cyber-physical systems (CPS) using closed-loop verification is challenging due to the hybrid dynamics in both systems and environments. Simulink and Stateflow are tools for model-based design that support a variety of mechanisms for modeling and analyzing hybrid dynamics of real-time embedded systems. In this paper, we present an SMT-based approach for formal analysis of the hybrid-dynamic timing behaviors of CPS modeled in Simulink blocks and Stateflow states (S/S). The hierarchically interconnected S/S are flattened and translated into the input language of SMT solver for formal verification. A translation algorithm is provided to facilitate the translation. Formal verification of timing constraints against the S/S models is reduced to the validity checking of the resulting SMT encodings. The applicability of our approach is demonstrated on an unmanned surface vessel case study.","PeriodicalId":102892,"journal":{"name":"2019 IEEE Real-Time Systems Symposium (RTSS)","volume":"819 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Work-in-Progress: Formal Analysis of Hybrid-Dynamic Timing Behaviors in Cyber-Physical Systems\",\"authors\":\"Li Huang, E. Kang\",\"doi\":\"10.1109/RTSS46320.2019.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring correctness of timed behaviors in cyber-physical systems (CPS) using closed-loop verification is challenging due to the hybrid dynamics in both systems and environments. Simulink and Stateflow are tools for model-based design that support a variety of mechanisms for modeling and analyzing hybrid dynamics of real-time embedded systems. In this paper, we present an SMT-based approach for formal analysis of the hybrid-dynamic timing behaviors of CPS modeled in Simulink blocks and Stateflow states (S/S). The hierarchically interconnected S/S are flattened and translated into the input language of SMT solver for formal verification. A translation algorithm is provided to facilitate the translation. Formal verification of timing constraints against the S/S models is reduced to the validity checking of the resulting SMT encodings. The applicability of our approach is demonstrated on an unmanned surface vessel case study.\",\"PeriodicalId\":102892,\"journal\":{\"name\":\"2019 IEEE Real-Time Systems Symposium (RTSS)\",\"volume\":\"819 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Real-Time Systems Symposium (RTSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS46320.2019.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS46320.2019.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于系统和环境中的混合动力学,使用闭环验证确保网络物理系统(CPS)中定时行为的正确性具有挑战性。Simulink和Stateflow是基于模型的设计工具,支持多种机制来建模和分析实时嵌入式系统的混合动态。在本文中,我们提出了一种基于smt的方法,用于形式化分析在Simulink块和状态流状态(S/S)中建模的CPS的混合动态时序行为。分层互连的S/S被平面化并翻译成SMT求解器的输入语言进行形式化验证。提供了一种翻译算法以方便翻译。针对S/S模型的时间约束的正式验证被简化为对结果SMT编码的有效性检查。该方法的适用性在无人水面舰艇案例研究中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-in-Progress: Formal Analysis of Hybrid-Dynamic Timing Behaviors in Cyber-Physical Systems
Ensuring correctness of timed behaviors in cyber-physical systems (CPS) using closed-loop verification is challenging due to the hybrid dynamics in both systems and environments. Simulink and Stateflow are tools for model-based design that support a variety of mechanisms for modeling and analyzing hybrid dynamics of real-time embedded systems. In this paper, we present an SMT-based approach for formal analysis of the hybrid-dynamic timing behaviors of CPS modeled in Simulink blocks and Stateflow states (S/S). The hierarchically interconnected S/S are flattened and translated into the input language of SMT solver for formal verification. A translation algorithm is provided to facilitate the translation. Formal verification of timing constraints against the S/S models is reduced to the validity checking of the resulting SMT encodings. The applicability of our approach is demonstrated on an unmanned surface vessel case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信