存储真实数据的受限聚类神经网络

R. Danilo, P. Coussy, L. Conde-Canencia, Vincent Gripon, W. Gross
{"title":"存储真实数据的受限聚类神经网络","authors":"R. Danilo, P. Coussy, L. Conde-Canencia, Vincent Gripon, W. Gross","doi":"10.1145/2742060.2743767","DOIUrl":null,"url":null,"abstract":"Associative memories are an alternative to classical indexed memories that are capable of retrieving a message previously stored when an incomplete version of this message is presented. Recently a new model of associative memory based on binary neurons and binary links has been proposed. This model named Clustered Neural Network (CNN) offers large storage diversity (number of messages stored) and fast message retrieval when implemented in hardware. The performance of this model drops when the stored message distribution is non-uniform. In this paper, we enhance the CNN model to support non-uniform message distribution by adding features of Restricted Boltzmann Machines. In addition, we present a fully parallel hardware design of the model. The proposed implementation multiplies the performance (diversity) of Clustered Neural Networks by a factor of 3 with an increase of complexity of 40%.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Restricted Clustered Neural Network for Storing Real Data\",\"authors\":\"R. Danilo, P. Coussy, L. Conde-Canencia, Vincent Gripon, W. Gross\",\"doi\":\"10.1145/2742060.2743767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Associative memories are an alternative to classical indexed memories that are capable of retrieving a message previously stored when an incomplete version of this message is presented. Recently a new model of associative memory based on binary neurons and binary links has been proposed. This model named Clustered Neural Network (CNN) offers large storage diversity (number of messages stored) and fast message retrieval when implemented in hardware. The performance of this model drops when the stored message distribution is non-uniform. In this paper, we enhance the CNN model to support non-uniform message distribution by adding features of Restricted Boltzmann Machines. In addition, we present a fully parallel hardware design of the model. The proposed implementation multiplies the performance (diversity) of Clustered Neural Networks by a factor of 3 with an increase of complexity of 40%.\",\"PeriodicalId\":255133,\"journal\":{\"name\":\"Proceedings of the 25th edition on Great Lakes Symposium on VLSI\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th edition on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2742060.2743767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2743767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

联想记忆是经典索引记忆的另一种选择,它能够在呈现该消息的不完整版本时检索先前存储的消息。近年来,人们提出了一种基于二值神经元和二值链路的联想记忆模型。这种被称为聚类神经网络(CNN)的模型在硬件上实现时提供了大的存储多样性(存储的消息数量)和快速的消息检索。当存储的消息分布不均匀时,该模型的性能会下降。在本文中,我们通过加入受限玻尔兹曼机的特征来增强CNN模型以支持非均匀消息分布。此外,我们还给出了该模型的全并行硬件设计。提出的实现将聚类神经网络的性能(多样性)提高了3倍,复杂性提高了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restricted Clustered Neural Network for Storing Real Data
Associative memories are an alternative to classical indexed memories that are capable of retrieving a message previously stored when an incomplete version of this message is presented. Recently a new model of associative memory based on binary neurons and binary links has been proposed. This model named Clustered Neural Network (CNN) offers large storage diversity (number of messages stored) and fast message retrieval when implemented in hardware. The performance of this model drops when the stored message distribution is non-uniform. In this paper, we enhance the CNN model to support non-uniform message distribution by adding features of Restricted Boltzmann Machines. In addition, we present a fully parallel hardware design of the model. The proposed implementation multiplies the performance (diversity) of Clustered Neural Networks by a factor of 3 with an increase of complexity of 40%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信