世界上第一辆自动驾驶水陆两栖巴士

D. Watabe, M. Wada, Nobumitu Shimizu, Tastuma Ohkubo
{"title":"世界上第一辆自动驾驶水陆两栖巴士","authors":"D. Watabe, M. Wada, Nobumitu Shimizu, Tastuma Ohkubo","doi":"10.15406/iratj.2023.09.00254","DOIUrl":null,"url":null,"abstract":"Amphibious buses are extensively used worldwide for transporting people to and from tourist attractions across water and land. Although numerous studies on self-driving technologies have been reported, research on the automatic operation and navigation of an amphibious vehicle has been sparse; moreover, owing to the size of the amphibious vehicles, automatic transport of multiple people is not possible. Therefore, in this study, we attempted to realize unmanned operation of a sightseeing amphibious bus for 45 passengers. The bus was outfitted with a by-wire system. On the vessel side, an actuator, similar to that used in JOY cars, was installed to turn the captain’s steering wheel. We also developed a software for the automatic operation and navigation of the bus. The relationship between the car’s steering-wheel angle and the front-tire angles is linear, whereas that between the captain’s steering-wheel angle and the vessel’s rudder-plate angle is not (and was approximated with a sixth-order polynomial). Furthermore, Autoware—a leading autonomous-driving software utilizing model-based predictive control algorithms to control the steering wheel of automobiles—was employed in this work. These algorithms were altered using Nomoto’s KT vessel model equation to improve the accuracy of vessel-path tracking. To the best of our knowledge, till date, no studies have documented the functioning of self-driving vessels using predictive controls based on Nomoto’s KT vessel model equation. In accordance with the vessel navigation rules based on the Autoware obstacle avoidance logic, LiDAR, cameras, and sonars were employed to detect obstructions and give-way paths. Thus, we successfully demonstrated the working of world's first self-driving amphibious bus, with automated controls for entering/exiting water and during give-way operations.","PeriodicalId":346234,"journal":{"name":"International Robotics & Automation Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"World’s first self-driving amphibious bus\",\"authors\":\"D. Watabe, M. Wada, Nobumitu Shimizu, Tastuma Ohkubo\",\"doi\":\"10.15406/iratj.2023.09.00254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amphibious buses are extensively used worldwide for transporting people to and from tourist attractions across water and land. Although numerous studies on self-driving technologies have been reported, research on the automatic operation and navigation of an amphibious vehicle has been sparse; moreover, owing to the size of the amphibious vehicles, automatic transport of multiple people is not possible. Therefore, in this study, we attempted to realize unmanned operation of a sightseeing amphibious bus for 45 passengers. The bus was outfitted with a by-wire system. On the vessel side, an actuator, similar to that used in JOY cars, was installed to turn the captain’s steering wheel. We also developed a software for the automatic operation and navigation of the bus. The relationship between the car’s steering-wheel angle and the front-tire angles is linear, whereas that between the captain’s steering-wheel angle and the vessel’s rudder-plate angle is not (and was approximated with a sixth-order polynomial). Furthermore, Autoware—a leading autonomous-driving software utilizing model-based predictive control algorithms to control the steering wheel of automobiles—was employed in this work. These algorithms were altered using Nomoto’s KT vessel model equation to improve the accuracy of vessel-path tracking. To the best of our knowledge, till date, no studies have documented the functioning of self-driving vessels using predictive controls based on Nomoto’s KT vessel model equation. In accordance with the vessel navigation rules based on the Autoware obstacle avoidance logic, LiDAR, cameras, and sonars were employed to detect obstructions and give-way paths. Thus, we successfully demonstrated the working of world's first self-driving amphibious bus, with automated controls for entering/exiting water and during give-way operations.\",\"PeriodicalId\":346234,\"journal\":{\"name\":\"International Robotics & Automation Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Robotics & Automation Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/iratj.2023.09.00254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Robotics & Automation Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/iratj.2023.09.00254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水陆两栖巴士在世界范围内被广泛用于运输人们往返于水上和陆地的旅游景点。尽管有大量关于自动驾驶技术的研究报道,但对两栖车辆的自动操作和导航的研究却很少;此外,由于水陆两栖车辆的尺寸,自动运输多人是不可能的。因此,在本研究中,我们尝试实现45人观光水陆客车的无人驾驶。这辆公共汽车装有电传系统。在船的一侧,安装了一个驱动器,类似于JOY汽车上使用的驱动器,用来转动船长的方向盘。我们还开发了一款用于公交车自动操作和导航的软件。汽车的方向盘角与前轮胎角之间是线性关系,而船长的方向盘角与船的舵板角之间不是线性关系(并且用六阶多项式近似)。此外,本文还采用了基于模型的预测控制算法来控制汽车方向盘的自动驾驶软件autoware。使用Nomoto的KT血管模型方程对这些算法进行了修改,以提高血管路径跟踪的准确性。据我们所知,到目前为止,还没有研究记录使用基于野本KT船舶模型方程的预测控制的自动驾驶船舶的功能。根据基于Autoware避障逻辑的船舶导航规则,采用激光雷达、摄像头和声纳探测障碍物和让路路径。因此,我们成功地展示了世界上第一辆自动驾驶水陆两栖巴士的工作原理,该巴士具有进出水和让路操作的自动控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
World’s first self-driving amphibious bus
Amphibious buses are extensively used worldwide for transporting people to and from tourist attractions across water and land. Although numerous studies on self-driving technologies have been reported, research on the automatic operation and navigation of an amphibious vehicle has been sparse; moreover, owing to the size of the amphibious vehicles, automatic transport of multiple people is not possible. Therefore, in this study, we attempted to realize unmanned operation of a sightseeing amphibious bus for 45 passengers. The bus was outfitted with a by-wire system. On the vessel side, an actuator, similar to that used in JOY cars, was installed to turn the captain’s steering wheel. We also developed a software for the automatic operation and navigation of the bus. The relationship between the car’s steering-wheel angle and the front-tire angles is linear, whereas that between the captain’s steering-wheel angle and the vessel’s rudder-plate angle is not (and was approximated with a sixth-order polynomial). Furthermore, Autoware—a leading autonomous-driving software utilizing model-based predictive control algorithms to control the steering wheel of automobiles—was employed in this work. These algorithms were altered using Nomoto’s KT vessel model equation to improve the accuracy of vessel-path tracking. To the best of our knowledge, till date, no studies have documented the functioning of self-driving vessels using predictive controls based on Nomoto’s KT vessel model equation. In accordance with the vessel navigation rules based on the Autoware obstacle avoidance logic, LiDAR, cameras, and sonars were employed to detect obstructions and give-way paths. Thus, we successfully demonstrated the working of world's first self-driving amphibious bus, with automated controls for entering/exiting water and during give-way operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信