Chung-Bin Wu, Y. Hwang, Yu-Cheng Hsueh, Yu-Kuan Hsiao
{"title":"High Efficient Bandwidth Utilization Hardware Design and Implement for AI Deep Learning Accelerator","authors":"Chung-Bin Wu, Y. Hwang, Yu-Cheng Hsueh, Yu-Kuan Hsiao","doi":"10.1109/ISOCC50952.2020.9333025","DOIUrl":null,"url":null,"abstract":"This paper proposes a neural network accelerator for Tiny-Yolo V2. The data format of input feature maps, output feature maps, and weight kernels are converted to uint8 through a quantization strategy to reduce the data size and make the hardware utilization more efficient. Moreover, we propose an input feature maps placement method to reduce bandwidth utilization and improve PE utilization. To verify the hardware implementation, the Xilinx ZCU102 platform is used to verify the hardware architecture. Synthesis results show that the proposed architecture implements in 90nm can achieve 14.4GOPS@100Mhz with area efficiency by 99 GOPS/M-gates.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9333025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种用于Tiny-Yolo V2的神经网络加速器。输入特征图、输出特征图和权重核的数据格式通过量化策略转换为uint8,以减少数据大小,使硬件利用率更高。此外,我们还提出了一种输入特征映射放置方法,以降低带宽利用率并提高PE利用率。为了验证硬件实现,使用Xilinx ZCU102平台验证硬件架构。综合结果表明,该架构在90nm内实现,通过99个GOPS/ m栅极的面积效率可以达到14.4GOPS@100Mhz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Efficient Bandwidth Utilization Hardware Design and Implement for AI Deep Learning Accelerator
This paper proposes a neural network accelerator for Tiny-Yolo V2. The data format of input feature maps, output feature maps, and weight kernels are converted to uint8 through a quantization strategy to reduce the data size and make the hardware utilization more efficient. Moreover, we propose an input feature maps placement method to reduce bandwidth utilization and improve PE utilization. To verify the hardware implementation, the Xilinx ZCU102 platform is used to verify the hardware architecture. Synthesis results show that the proposed architecture implements in 90nm can achieve 14.4GOPS@100Mhz with area efficiency by 99 GOPS/M-gates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信