改进的模糊c均值聚类算法用于肺结节的自动检测

Fan Liao, Chunxia Zhao
{"title":"改进的模糊c均值聚类算法用于肺结节的自动检测","authors":"Fan Liao, Chunxia Zhao","doi":"10.1109/CISP.2015.7407925","DOIUrl":null,"url":null,"abstract":"The image features of pulmonary nodules in the CT image are inconspicuous, the shape and location is different. Computer-aided detection system can increase the detection rate of lung nodules and reduce the error rate, which can assist the clinicians to distinguish between benign and malignant nodules. This paper presents an improved fuzzy c-means (FCM) method based on the human visual attention model. The simulation result shows the effects of the new method used in computer-aided diagnosis.","PeriodicalId":167631,"journal":{"name":"2015 8th International Congress on Image and Signal Processing (CISP)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved fuzzy c-means clustering algorithm for automatic detection of lung nodules\",\"authors\":\"Fan Liao, Chunxia Zhao\",\"doi\":\"10.1109/CISP.2015.7407925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The image features of pulmonary nodules in the CT image are inconspicuous, the shape and location is different. Computer-aided detection system can increase the detection rate of lung nodules and reduce the error rate, which can assist the clinicians to distinguish between benign and malignant nodules. This paper presents an improved fuzzy c-means (FCM) method based on the human visual attention model. The simulation result shows the effects of the new method used in computer-aided diagnosis.\",\"PeriodicalId\":167631,\"journal\":{\"name\":\"2015 8th International Congress on Image and Signal Processing (CISP)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 8th International Congress on Image and Signal Processing (CISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP.2015.7407925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2015.7407925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

肺结节在CT图像上的图像特征不明显,形状和位置不同。计算机辅助检测系统可以提高肺结节的检出率,降低错误率,有助于临床医生区分良恶性结节。提出了一种基于人类视觉注意模型的改进模糊c均值(FCM)方法。仿真结果表明了该方法在计算机辅助诊断中的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved fuzzy c-means clustering algorithm for automatic detection of lung nodules
The image features of pulmonary nodules in the CT image are inconspicuous, the shape and location is different. Computer-aided detection system can increase the detection rate of lung nodules and reduce the error rate, which can assist the clinicians to distinguish between benign and malignant nodules. This paper presents an improved fuzzy c-means (FCM) method based on the human visual attention model. The simulation result shows the effects of the new method used in computer-aided diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信