自动驾驶匝道合并控制的意图估计

Chiyu Dong, J. Dolan, B. Litkouhi
{"title":"自动驾驶匝道合并控制的意图估计","authors":"Chiyu Dong, J. Dolan, B. Litkouhi","doi":"10.1109/IVS.2017.7995935","DOIUrl":null,"url":null,"abstract":"Cooperative driving behavior is essential for driving in traffic, especially for ramp merging, lane changing or navigating intersections. Autonomous vehicles should also manage these situations by behaving cooperatively and naturally. In this paper, we present a novel learning-based method to efficiently estimate other vehicles' intentions and interact with them in ramp merging scenarios, without over-the-air communication between vehicles. The intention estimate is generated from a Probabilistic Graphical Model (PGM) which organizes historical data and latent intentions and determines predictions. Real driving trajectories are used to learn transition models in the PGM. Thus, besides the structure of the PGM, our method does not require human-designed reward or cost functions. The PGM-based intention estimation is followed by an off-the-shelf ACC distance keeping model to generate proper acceleration/deceleration commands. The PGM plays a plug-in role in our self-driving framework [1]. We validate the performance of our method both on real merging data and using a designed merging strategy in simulation, and show significant improvements compared with previous methods. Parameter design is also discussed by experiments. The new method is computationally efficient, and does not require acceleration information about other vehicles, which is hard to read directly from sensors mounted on the autonomous vehicle.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Intention estimation for ramp merging control in autonomous driving\",\"authors\":\"Chiyu Dong, J. Dolan, B. Litkouhi\",\"doi\":\"10.1109/IVS.2017.7995935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative driving behavior is essential for driving in traffic, especially for ramp merging, lane changing or navigating intersections. Autonomous vehicles should also manage these situations by behaving cooperatively and naturally. In this paper, we present a novel learning-based method to efficiently estimate other vehicles' intentions and interact with them in ramp merging scenarios, without over-the-air communication between vehicles. The intention estimate is generated from a Probabilistic Graphical Model (PGM) which organizes historical data and latent intentions and determines predictions. Real driving trajectories are used to learn transition models in the PGM. Thus, besides the structure of the PGM, our method does not require human-designed reward or cost functions. The PGM-based intention estimation is followed by an off-the-shelf ACC distance keeping model to generate proper acceleration/deceleration commands. The PGM plays a plug-in role in our self-driving framework [1]. We validate the performance of our method both on real merging data and using a designed merging strategy in simulation, and show significant improvements compared with previous methods. Parameter design is also discussed by experiments. The new method is computationally efficient, and does not require acceleration information about other vehicles, which is hard to read directly from sensors mounted on the autonomous vehicle.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

摘要

合作驾驶行为对于交通中的驾驶是必不可少的,特别是在匝道合并、变道或交叉路口的导航中。自动驾驶汽车也应该通过合作和自然的行为来管理这些情况。在本文中,我们提出了一种新的基于学习的方法来有效地估计其他车辆的意图,并在坡道合并场景中与它们进行交互,而无需车辆之间的空中通信。意图估计是由概率图形模型(PGM)生成的,该模型组织历史数据和潜在意图并确定预测。在PGM中,使用真实驾驶轨迹来学习过渡模型。因此,除了PGM的结构之外,我们的方法不需要人为设计的奖励或成本函数。基于pgm的意图估计之后是一个现成的ACC距离保持模型,以生成适当的加速/减速命令。PGM在我们的自动驾驶框架中扮演插件的角色[1]。我们在真实的合并数据和设计的合并策略上验证了该方法的性能,与以前的方法相比有了显著的改进。并通过实验对参数设计进行了探讨。这种新方法计算效率很高,而且不需要其他车辆的加速信息,而这些信息很难直接从安装在自动驾驶汽车上的传感器上读取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intention estimation for ramp merging control in autonomous driving
Cooperative driving behavior is essential for driving in traffic, especially for ramp merging, lane changing or navigating intersections. Autonomous vehicles should also manage these situations by behaving cooperatively and naturally. In this paper, we present a novel learning-based method to efficiently estimate other vehicles' intentions and interact with them in ramp merging scenarios, without over-the-air communication between vehicles. The intention estimate is generated from a Probabilistic Graphical Model (PGM) which organizes historical data and latent intentions and determines predictions. Real driving trajectories are used to learn transition models in the PGM. Thus, besides the structure of the PGM, our method does not require human-designed reward or cost functions. The PGM-based intention estimation is followed by an off-the-shelf ACC distance keeping model to generate proper acceleration/deceleration commands. The PGM plays a plug-in role in our self-driving framework [1]. We validate the performance of our method both on real merging data and using a designed merging strategy in simulation, and show significant improvements compared with previous methods. Parameter design is also discussed by experiments. The new method is computationally efficient, and does not require acceleration information about other vehicles, which is hard to read directly from sensors mounted on the autonomous vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信