基于卷积神经网络的冰山和船舶识别合成孔径雷达图像预处理方法评价

XingWen Li, Weimin Huang, D. Peters, D. Power
{"title":"基于卷积神经网络的冰山和船舶识别合成孔径雷达图像预处理方法评价","authors":"XingWen Li, Weimin Huang, D. Peters, D. Power","doi":"10.1109/RADAR.2019.8835807","DOIUrl":null,"url":null,"abstract":"The classification of objects and man-made structures on the ocean surface using synthetic aperture radar (SAR) imagery finds an important use in monitoring for icebergs and sea ice. Convolutional Neural Network (CNN) method can be employed to effectively classify objects imaged through SAR data. In this paper, the CNN performance is evaluated when three different preprocessing procedures are applied to the SAR image data to prepare the CNN's input data. Segmentation or normalization algorithms are implemented in the three procedures. Experimental results demonstrate an improvement over unsegmented and un-normalized images. Performance metrics for all three methods are approximately 94%, indicating that while some image preprocessing is required to achieve higher performance, the CNN tested is robust to the noise present in the SAR images used.","PeriodicalId":360366,"journal":{"name":"2019 IEEE Radar Conference (RadarConf)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Assessment of Synthetic Aperture Radar Image Preprocessing Methods for Iceberg and Ship Recognition with Convolutional Neural Networks\",\"authors\":\"XingWen Li, Weimin Huang, D. Peters, D. Power\",\"doi\":\"10.1109/RADAR.2019.8835807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classification of objects and man-made structures on the ocean surface using synthetic aperture radar (SAR) imagery finds an important use in monitoring for icebergs and sea ice. Convolutional Neural Network (CNN) method can be employed to effectively classify objects imaged through SAR data. In this paper, the CNN performance is evaluated when three different preprocessing procedures are applied to the SAR image data to prepare the CNN's input data. Segmentation or normalization algorithms are implemented in the three procedures. Experimental results demonstrate an improvement over unsegmented and un-normalized images. Performance metrics for all three methods are approximately 94%, indicating that while some image preprocessing is required to achieve higher performance, the CNN tested is robust to the noise present in the SAR images used.\",\"PeriodicalId\":360366,\"journal\":{\"name\":\"2019 IEEE Radar Conference (RadarConf)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Radar Conference (RadarConf)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2019.8835807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Radar Conference (RadarConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2019.8835807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

利用合成孔径雷达(SAR)图像对海面上的物体和人造结构进行分类,在监测冰山和海冰方面具有重要意义。卷积神经网络(CNN)方法可以有效地对SAR数据成像的目标进行分类。本文通过对SAR图像数据进行三种不同的预处理来准备CNN的输入数据,对CNN的性能进行了评估。分割或归一化算法在三个程序中实现。实验结果表明,该算法比未分割和未归一化的图像有很大的改进。所有三种方法的性能指标都约为94%,这表明虽然需要进行一些图像预处理才能达到更高的性能,但测试的CNN对所使用的SAR图像中的噪声具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Synthetic Aperture Radar Image Preprocessing Methods for Iceberg and Ship Recognition with Convolutional Neural Networks
The classification of objects and man-made structures on the ocean surface using synthetic aperture radar (SAR) imagery finds an important use in monitoring for icebergs and sea ice. Convolutional Neural Network (CNN) method can be employed to effectively classify objects imaged through SAR data. In this paper, the CNN performance is evaluated when three different preprocessing procedures are applied to the SAR image data to prepare the CNN's input data. Segmentation or normalization algorithms are implemented in the three procedures. Experimental results demonstrate an improvement over unsegmented and un-normalized images. Performance metrics for all three methods are approximately 94%, indicating that while some image preprocessing is required to achieve higher performance, the CNN tested is robust to the noise present in the SAR images used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信