最小消息长度隐马尔可夫建模

T. Edgoose, L. Allison
{"title":"最小消息长度隐马尔可夫建模","authors":"T. Edgoose, L. Allison","doi":"10.1109/DCC.1998.672145","DOIUrl":null,"url":null,"abstract":"This paper describes a minimum message length (MML) approach to finding the most appropriate hidden Markov model (HMM) to describe a given sequence of observations. An MML estimate for the expected length of a two-part message stating a specific HMM and the observations given this model is presented along with an effective search strategy for finding the best number of states for the model. The information estimate enables two models with different numbers of states to be fairly compared which is necessary if the search of this complex model space is to avoid the worst locally optimal solutions. The general purpose MML classifier 'Snob' has been extended and the new program 'tSnob' is tested on 'synthetic' data and a large 'real world' dataset. The MML measure is found to be an improvement on the Bayesian information criteria (BIG) and the un-supervised search strategy.","PeriodicalId":191890,"journal":{"name":"Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Minimum message length hidden Markov modelling\",\"authors\":\"T. Edgoose, L. Allison\",\"doi\":\"10.1109/DCC.1998.672145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a minimum message length (MML) approach to finding the most appropriate hidden Markov model (HMM) to describe a given sequence of observations. An MML estimate for the expected length of a two-part message stating a specific HMM and the observations given this model is presented along with an effective search strategy for finding the best number of states for the model. The information estimate enables two models with different numbers of states to be fairly compared which is necessary if the search of this complex model space is to avoid the worst locally optimal solutions. The general purpose MML classifier 'Snob' has been extended and the new program 'tSnob' is tested on 'synthetic' data and a large 'real world' dataset. The MML measure is found to be an improvement on the Bayesian information criteria (BIG) and the un-supervised search strategy.\",\"PeriodicalId\":191890,\"journal\":{\"name\":\"Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1998.672145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1998.672145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了一种最小消息长度(MML)方法来寻找最合适的隐马尔可夫模型(HMM)来描述给定的观测序列。给出了描述特定HMM的由两部分组成的消息的预期长度的MML估计和给出该模型的观察结果,以及用于为模型找到最佳状态数的有效搜索策略。信息估计使具有不同状态数的两个模型能够公平地进行比较,这是在该复杂模型空间的搜索中避免出现最坏局部最优解所必需的。通用MML分类器'Snob'已经扩展,新程序'tSnob'在'合成'数据和大型'真实世界'数据集上进行了测试。发现MML度量是对贝叶斯信息标准(BIG)和无监督搜索策略的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum message length hidden Markov modelling
This paper describes a minimum message length (MML) approach to finding the most appropriate hidden Markov model (HMM) to describe a given sequence of observations. An MML estimate for the expected length of a two-part message stating a specific HMM and the observations given this model is presented along with an effective search strategy for finding the best number of states for the model. The information estimate enables two models with different numbers of states to be fairly compared which is necessary if the search of this complex model space is to avoid the worst locally optimal solutions. The general purpose MML classifier 'Snob' has been extended and the new program 'tSnob' is tested on 'synthetic' data and a large 'real world' dataset. The MML measure is found to be an improvement on the Bayesian information criteria (BIG) and the un-supervised search strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信