Bellal Hafhouf, A. Zitouni, A. C. Megherbi, S. Sbaa
{"title":"一种改进的U-Net皮肤病灶分割方法","authors":"Bellal Hafhouf, A. Zitouni, A. C. Megherbi, S. Sbaa","doi":"10.1109/CCSSP49278.2020.9151511","DOIUrl":null,"url":null,"abstract":"In this paper, for skin lesion segmentation, we propose an encoder-decoder structure based on U-Net, combining dilated convolution and pyramid pooling module (PPM). The dilated convolution computes the feature maps with a high spatial resolution instead to down-sampling feature maps, and the aim of pyramid pooling module is to obtain more contextual information (multi-scale context information with multi-scale pooling). on the official test set of ISBI 2016, and in terms of three evaluation metrics, Our proposed model is tested and achieved better performance over U-Net and another published method with (JC=82.7, DC=89.6, SE =92.0).","PeriodicalId":401063,"journal":{"name":"020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP)","volume":"30 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Modified U-Net for Skin Lesion Segmentation\",\"authors\":\"Bellal Hafhouf, A. Zitouni, A. C. Megherbi, S. Sbaa\",\"doi\":\"10.1109/CCSSP49278.2020.9151511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for skin lesion segmentation, we propose an encoder-decoder structure based on U-Net, combining dilated convolution and pyramid pooling module (PPM). The dilated convolution computes the feature maps with a high spatial resolution instead to down-sampling feature maps, and the aim of pyramid pooling module is to obtain more contextual information (multi-scale context information with multi-scale pooling). on the official test set of ISBI 2016, and in terms of three evaluation metrics, Our proposed model is tested and achieved better performance over U-Net and another published method with (JC=82.7, DC=89.6, SE =92.0).\",\"PeriodicalId\":401063,\"journal\":{\"name\":\"020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP)\",\"volume\":\"30 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCSSP49278.2020.9151511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCSSP49278.2020.9151511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
摘要
本文针对皮肤损伤分割,提出了一种基于U-Net的编码器-解码器结构,该结构结合了扩展卷积和金字塔池模块(PPM)。展开卷积以高空间分辨率计算特征图,而不是对特征图进行降采样,金字塔池化模块的目的是获得更多的上下文信息(多尺度池化的多尺度上下文信息)。在ISBI 2016的官方测试集上,根据三个评估指标,对我们提出的模型进行了测试,并取得了比U-Net和另一种已发表的方法(JC=82.7, DC=89.6, SE =92.0)更好的性能。
In this paper, for skin lesion segmentation, we propose an encoder-decoder structure based on U-Net, combining dilated convolution and pyramid pooling module (PPM). The dilated convolution computes the feature maps with a high spatial resolution instead to down-sampling feature maps, and the aim of pyramid pooling module is to obtain more contextual information (multi-scale context information with multi-scale pooling). on the official test set of ISBI 2016, and in terms of three evaluation metrics, Our proposed model is tested and achieved better performance over U-Net and another published method with (JC=82.7, DC=89.6, SE =92.0).