一种改进的U-Net皮肤病灶分割方法

Bellal Hafhouf, A. Zitouni, A. C. Megherbi, S. Sbaa
{"title":"一种改进的U-Net皮肤病灶分割方法","authors":"Bellal Hafhouf, A. Zitouni, A. C. Megherbi, S. Sbaa","doi":"10.1109/CCSSP49278.2020.9151511","DOIUrl":null,"url":null,"abstract":"In this paper, for skin lesion segmentation, we propose an encoder-decoder structure based on U-Net, combining dilated convolution and pyramid pooling module (PPM). The dilated convolution computes the feature maps with a high spatial resolution instead to down-sampling feature maps, and the aim of pyramid pooling module is to obtain more contextual information (multi-scale context information with multi-scale pooling). on the official test set of ISBI 2016, and in terms of three evaluation metrics, Our proposed model is tested and achieved better performance over U-Net and another published method with (JC=82.7, DC=89.6, SE =92.0).","PeriodicalId":401063,"journal":{"name":"020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP)","volume":"30 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Modified U-Net for Skin Lesion Segmentation\",\"authors\":\"Bellal Hafhouf, A. Zitouni, A. C. Megherbi, S. Sbaa\",\"doi\":\"10.1109/CCSSP49278.2020.9151511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for skin lesion segmentation, we propose an encoder-decoder structure based on U-Net, combining dilated convolution and pyramid pooling module (PPM). The dilated convolution computes the feature maps with a high spatial resolution instead to down-sampling feature maps, and the aim of pyramid pooling module is to obtain more contextual information (multi-scale context information with multi-scale pooling). on the official test set of ISBI 2016, and in terms of three evaluation metrics, Our proposed model is tested and achieved better performance over U-Net and another published method with (JC=82.7, DC=89.6, SE =92.0).\",\"PeriodicalId\":401063,\"journal\":{\"name\":\"020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP)\",\"volume\":\"30 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCSSP49278.2020.9151511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCSSP49278.2020.9151511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文针对皮肤损伤分割,提出了一种基于U-Net的编码器-解码器结构,该结构结合了扩展卷积和金字塔池模块(PPM)。展开卷积以高空间分辨率计算特征图,而不是对特征图进行降采样,金字塔池化模块的目的是获得更多的上下文信息(多尺度池化的多尺度上下文信息)。在ISBI 2016的官方测试集上,根据三个评估指标,对我们提出的模型进行了测试,并取得了比U-Net和另一种已发表的方法(JC=82.7, DC=89.6, SE =92.0)更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified U-Net for Skin Lesion Segmentation
In this paper, for skin lesion segmentation, we propose an encoder-decoder structure based on U-Net, combining dilated convolution and pyramid pooling module (PPM). The dilated convolution computes the feature maps with a high spatial resolution instead to down-sampling feature maps, and the aim of pyramid pooling module is to obtain more contextual information (multi-scale context information with multi-scale pooling). on the official test set of ISBI 2016, and in terms of three evaluation metrics, Our proposed model is tested and achieved better performance over U-Net and another published method with (JC=82.7, DC=89.6, SE =92.0).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信