{"title":"基于树的拓扑中分布式检测的最优拜占庭攻击","authors":"B. Kailkhura, Swastik Brahma, P. Varshney","doi":"10.1109/ICCNC.2013.6504085","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of optimal Byzantine attacks or data falsification attacks on distributed detection mechanism in tree-based topologies. First, we show that when more than a certain fraction of individual node decisions are falsified, the decision fusion scheme becomes completely incapable. Second, under the assumption that there is a cost associated with attacking each node (which represent resources invested in capturing a node or cloning a node in some cases), we address the problem of minimum cost Byzantine attacks and formulate it as the bounded knapsack problem (BKP). An algorithm to solve our problem in polynomial time is presented. Numerical results provide insights into our solution.","PeriodicalId":229123,"journal":{"name":"2013 International Conference on Computing, Networking and Communications (ICNC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Optimal Byzantine attacks on distributed detection in tree-based topologies\",\"authors\":\"B. Kailkhura, Swastik Brahma, P. Varshney\",\"doi\":\"10.1109/ICCNC.2013.6504085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of optimal Byzantine attacks or data falsification attacks on distributed detection mechanism in tree-based topologies. First, we show that when more than a certain fraction of individual node decisions are falsified, the decision fusion scheme becomes completely incapable. Second, under the assumption that there is a cost associated with attacking each node (which represent resources invested in capturing a node or cloning a node in some cases), we address the problem of minimum cost Byzantine attacks and formulate it as the bounded knapsack problem (BKP). An algorithm to solve our problem in polynomial time is presented. Numerical results provide insights into our solution.\",\"PeriodicalId\":229123,\"journal\":{\"name\":\"2013 International Conference on Computing, Networking and Communications (ICNC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Computing, Networking and Communications (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCNC.2013.6504085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2013.6504085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Byzantine attacks on distributed detection in tree-based topologies
This paper considers the problem of optimal Byzantine attacks or data falsification attacks on distributed detection mechanism in tree-based topologies. First, we show that when more than a certain fraction of individual node decisions are falsified, the decision fusion scheme becomes completely incapable. Second, under the assumption that there is a cost associated with attacking each node (which represent resources invested in capturing a node or cloning a node in some cases), we address the problem of minimum cost Byzantine attacks and formulate it as the bounded knapsack problem (BKP). An algorithm to solve our problem in polynomial time is presented. Numerical results provide insights into our solution.