{"title":"利用频域分析确定双向双有源桥式DC-DC变换器的ZVS软开关边界","authors":"J. Riedel, D. G. Holmes, B. Mcgrath","doi":"10.1109/ICPE.2015.7167870","DOIUrl":null,"url":null,"abstract":"Dual Active Bridge (DAB) converters offer an unmatched capability to transfer energy in either direction between two DC sources, while also providing galvanic isolation and high conversion efficiency. However, to operate at high efficiencies, the bridges must operate with Zero-Voltage-Switching (ZVS) over as wide an operating range as possible. The conventional approach to determine ZVS operation uses time domain analysis with ideal AC coupling inductances, which only approximately identifies the ZVS boundaries. This paper proposes a new approach using frequency domain analysis of the bridge switching patterns, which accurately predicts the ZVS boundaries over a full range of operating conditions while also accommodating more complex AC coupling structures and practical impedance non-idealities. An exact theoretical analysis is presented for two level modulation of the two bridges coupled through a general impedance structure. An analytical solution is then presented for a single coupling impedance, while boundaries for more complex coupling structures and practical impedances are solved by numerical integration. ZVS boundaries for selected systems are validated by matching simulation and experimental results.","PeriodicalId":160988,"journal":{"name":"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Identifying ZVS soft switching boundaries for bi-directional dual active bridge DC-DC converters using frequency domain analysis\",\"authors\":\"J. Riedel, D. G. Holmes, B. Mcgrath\",\"doi\":\"10.1109/ICPE.2015.7167870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual Active Bridge (DAB) converters offer an unmatched capability to transfer energy in either direction between two DC sources, while also providing galvanic isolation and high conversion efficiency. However, to operate at high efficiencies, the bridges must operate with Zero-Voltage-Switching (ZVS) over as wide an operating range as possible. The conventional approach to determine ZVS operation uses time domain analysis with ideal AC coupling inductances, which only approximately identifies the ZVS boundaries. This paper proposes a new approach using frequency domain analysis of the bridge switching patterns, which accurately predicts the ZVS boundaries over a full range of operating conditions while also accommodating more complex AC coupling structures and practical impedance non-idealities. An exact theoretical analysis is presented for two level modulation of the two bridges coupled through a general impedance structure. An analytical solution is then presented for a single coupling impedance, while boundaries for more complex coupling structures and practical impedances are solved by numerical integration. ZVS boundaries for selected systems are validated by matching simulation and experimental results.\",\"PeriodicalId\":160988,\"journal\":{\"name\":\"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPE.2015.7167870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPE.2015.7167870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying ZVS soft switching boundaries for bi-directional dual active bridge DC-DC converters using frequency domain analysis
Dual Active Bridge (DAB) converters offer an unmatched capability to transfer energy in either direction between two DC sources, while also providing galvanic isolation and high conversion efficiency. However, to operate at high efficiencies, the bridges must operate with Zero-Voltage-Switching (ZVS) over as wide an operating range as possible. The conventional approach to determine ZVS operation uses time domain analysis with ideal AC coupling inductances, which only approximately identifies the ZVS boundaries. This paper proposes a new approach using frequency domain analysis of the bridge switching patterns, which accurately predicts the ZVS boundaries over a full range of operating conditions while also accommodating more complex AC coupling structures and practical impedance non-idealities. An exact theoretical analysis is presented for two level modulation of the two bridges coupled through a general impedance structure. An analytical solution is then presented for a single coupling impedance, while boundaries for more complex coupling structures and practical impedances are solved by numerical integration. ZVS boundaries for selected systems are validated by matching simulation and experimental results.