{"title":"有效的片上矢量处理多核处理器","authors":"S. F. Beldianu, Sotirios G. Ziavras","doi":"10.1109/ISSoC.2013.6675260","DOIUrl":null,"url":null,"abstract":"Per-core vector support in multicores is not efficient since applications rarely sustain high DLP. We present two Power Gating (PG) schemes to dynamically control Vector co-Processors (VPs) shared by cores. ASIC and FPGA modeling show that PG can reduce the energy by 33% while maintaining high performance.","PeriodicalId":228272,"journal":{"name":"2013 International Symposium on System on Chip (SoC)","volume":"23 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient on-chip vector processing for multicore processors\",\"authors\":\"S. F. Beldianu, Sotirios G. Ziavras\",\"doi\":\"10.1109/ISSoC.2013.6675260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Per-core vector support in multicores is not efficient since applications rarely sustain high DLP. We present two Power Gating (PG) schemes to dynamically control Vector co-Processors (VPs) shared by cores. ASIC and FPGA modeling show that PG can reduce the energy by 33% while maintaining high performance.\",\"PeriodicalId\":228272,\"journal\":{\"name\":\"2013 International Symposium on System on Chip (SoC)\",\"volume\":\"23 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Symposium on System on Chip (SoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSoC.2013.6675260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Symposium on System on Chip (SoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSoC.2013.6675260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient on-chip vector processing for multicore processors
Per-core vector support in multicores is not efficient since applications rarely sustain high DLP. We present two Power Gating (PG) schemes to dynamically control Vector co-Processors (VPs) shared by cores. ASIC and FPGA modeling show that PG can reduce the energy by 33% while maintaining high performance.