从血容量脉搏信号识别短期焦虑

Wahida Handouzi, C. Maaoui, A. Pruski, Abdelhak Moussaoui
{"title":"从血容量脉搏信号识别短期焦虑","authors":"Wahida Handouzi, C. Maaoui, A. Pruski, Abdelhak Moussaoui","doi":"10.1109/SSD.2014.6808747","DOIUrl":null,"url":null,"abstract":"In this paper we focus our attention on the development of a virtual reality exposure system to induce anxiety and a strategy for recognizing it. We describe anxiety detection in short term from blood volume pulse measurement; detailing data collection, features extraction and classification. We built a model of anxiety detection using support vector machines and evaluate it on the collected data. Results show that the choice of relevant features allowed good anxiety recognition.","PeriodicalId":168063,"journal":{"name":"2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Short-term anxiety recognition from blood volume pulse signal\",\"authors\":\"Wahida Handouzi, C. Maaoui, A. Pruski, Abdelhak Moussaoui\",\"doi\":\"10.1109/SSD.2014.6808747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we focus our attention on the development of a virtual reality exposure system to induce anxiety and a strategy for recognizing it. We describe anxiety detection in short term from blood volume pulse measurement; detailing data collection, features extraction and classification. We built a model of anxiety detection using support vector machines and evaluate it on the collected data. Results show that the choice of relevant features allowed good anxiety recognition.\",\"PeriodicalId\":168063,\"journal\":{\"name\":\"2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD.2014.6808747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2014.6808747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们重点研究了虚拟现实暴露系统诱导焦虑和识别策略的开发。我们描述了短期内通过血容量脉搏测量来检测焦虑;详细的数据收集,特征提取和分类。我们使用支持向量机建立了一个焦虑检测模型,并对收集到的数据进行了评估。结果表明,相关特征的选择可以很好地识别焦虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term anxiety recognition from blood volume pulse signal
In this paper we focus our attention on the development of a virtual reality exposure system to induce anxiety and a strategy for recognizing it. We describe anxiety detection in short term from blood volume pulse measurement; detailing data collection, features extraction and classification. We built a model of anxiety detection using support vector machines and evaluate it on the collected data. Results show that the choice of relevant features allowed good anxiety recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信