{"title":"结合SAX和分段线性逼近改进金融时间序列相似性搜索","authors":"Nguyen Quoc Viet Hung, D. T. Anh","doi":"10.1109/ISITC.2007.33","DOIUrl":null,"url":null,"abstract":"Efficient and accurate similarity searching on a large time series data set is an important but non- trivial problem. In this work, we propose a new approach to improve the quality of similarity search on time series data by combining symbolic aggregate approximation (SAX) and piecewise linear approximation. The approach consists of three steps: transforming real valued time series sequences to symbolic strings via SAX, pattern matching on the symbolic strings and a post-processing via Piecewise Linear Approximation.","PeriodicalId":394071,"journal":{"name":"2007 International Symposium on Information Technology Convergence (ISITC 2007)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Combining SAX and Piecewise Linear Approximation to Improve Similarity Search on Financial Time Series\",\"authors\":\"Nguyen Quoc Viet Hung, D. T. Anh\",\"doi\":\"10.1109/ISITC.2007.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient and accurate similarity searching on a large time series data set is an important but non- trivial problem. In this work, we propose a new approach to improve the quality of similarity search on time series data by combining symbolic aggregate approximation (SAX) and piecewise linear approximation. The approach consists of three steps: transforming real valued time series sequences to symbolic strings via SAX, pattern matching on the symbolic strings and a post-processing via Piecewise Linear Approximation.\",\"PeriodicalId\":394071,\"journal\":{\"name\":\"2007 International Symposium on Information Technology Convergence (ISITC 2007)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Information Technology Convergence (ISITC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITC.2007.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Information Technology Convergence (ISITC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITC.2007.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining SAX and Piecewise Linear Approximation to Improve Similarity Search on Financial Time Series
Efficient and accurate similarity searching on a large time series data set is an important but non- trivial problem. In this work, we propose a new approach to improve the quality of similarity search on time series data by combining symbolic aggregate approximation (SAX) and piecewise linear approximation. The approach consists of three steps: transforming real valued time series sequences to symbolic strings via SAX, pattern matching on the symbolic strings and a post-processing via Piecewise Linear Approximation.