自由体积对酸运输影响的分子水平模拟

G. Schmid, S. Burns, M. Stewart, V.K. Singh, C. Willson
{"title":"自由体积对酸运输影响的分子水平模拟","authors":"G. Schmid, S. Burns, M. Stewart, V.K. Singh, C. Willson","doi":"10.1109/IMNC.2000.872638","DOIUrl":null,"url":null,"abstract":"Chemically amplified photoresists are highly sensitive because the product of a single photolysis can catalyze many of the deprotection reactions that change the solubility of the resist film. In deep-ultraviolet (DUV) resists, mass transport of photogenerated acid during the post exposure bake allows a single acid molecule to catalyze several deprotection reactions. However, lateral transport of acid into unexposed regions of the resist can complicate control over the critical dimension of printed features. An understanding of the factors that contribute to acid mobility would allow resist manufacturers to tailor resist transport properties to their needs: however, the exact mechanism of acid transport still remains poorly understood. In this paper the efect of the lifetime of excess free volume upon resist performance has been studied with a molecular scale model.","PeriodicalId":270640,"journal":{"name":"Digest of Papers Microprocesses and Nanotechnology 2000. 2000 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.00EX387)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular level simulation of the free volume effect on acid transport\",\"authors\":\"G. Schmid, S. Burns, M. Stewart, V.K. Singh, C. Willson\",\"doi\":\"10.1109/IMNC.2000.872638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemically amplified photoresists are highly sensitive because the product of a single photolysis can catalyze many of the deprotection reactions that change the solubility of the resist film. In deep-ultraviolet (DUV) resists, mass transport of photogenerated acid during the post exposure bake allows a single acid molecule to catalyze several deprotection reactions. However, lateral transport of acid into unexposed regions of the resist can complicate control over the critical dimension of printed features. An understanding of the factors that contribute to acid mobility would allow resist manufacturers to tailor resist transport properties to their needs: however, the exact mechanism of acid transport still remains poorly understood. In this paper the efect of the lifetime of excess free volume upon resist performance has been studied with a molecular scale model.\",\"PeriodicalId\":270640,\"journal\":{\"name\":\"Digest of Papers Microprocesses and Nanotechnology 2000. 2000 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.00EX387)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Papers Microprocesses and Nanotechnology 2000. 2000 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.00EX387)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMNC.2000.872638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Papers Microprocesses and Nanotechnology 2000. 2000 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.00EX387)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMNC.2000.872638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

化学放大的光刻胶是高度敏感的,因为单次光解的产物可以催化许多改变光刻膜溶解度的脱保护反应。在深紫外(DUV)抗蚀剂中,光生成酸在曝光后烘烤过程中的质量传递允许单个酸分子催化几个脱保护反应。然而,酸的横向运输到抗蚀剂的未暴露区域可以复杂的控制印刷特征的关键尺寸。了解影响酸迁移的因素将使抗蚀剂制造商能够根据他们的需要定制抗蚀剂的运输特性:然而,对酸运输的确切机制仍然知之甚少。本文用分子尺度模型研究了过量自由体积寿命对抗蚀性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular level simulation of the free volume effect on acid transport
Chemically amplified photoresists are highly sensitive because the product of a single photolysis can catalyze many of the deprotection reactions that change the solubility of the resist film. In deep-ultraviolet (DUV) resists, mass transport of photogenerated acid during the post exposure bake allows a single acid molecule to catalyze several deprotection reactions. However, lateral transport of acid into unexposed regions of the resist can complicate control over the critical dimension of printed features. An understanding of the factors that contribute to acid mobility would allow resist manufacturers to tailor resist transport properties to their needs: however, the exact mechanism of acid transport still remains poorly understood. In this paper the efect of the lifetime of excess free volume upon resist performance has been studied with a molecular scale model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信